For more details, please see our publications:
Youngmin Kim and D. P. Neikirk, "Micromachined Fabry-Perot Cavity Pressure
Transducer," IEEE Photonics Technology Letters 7, Dec. 1995, pp. 1471-1473.
Y. Kim and D. P. Neikirk, "Micromachined Fabry-Perot Pressure Transducer
with Optical Fiber Interconnects," in Micromachined Devices and Components,
Ray Roop, Kevin Chau, Editors, Proc. SPIE 2642, pp. 242-249, Austin, Texas,
USA, 23-24 October, 1995.
J. Han and D. P. Neikirk, "Deflection
behavior of Fabry-Perot pressure sensors having planar and corrugated membrane,"
SPIE's Micromachining and Microfabrication '96 Symposium: Micromachined
Devices and Components II, R. Roop and K. Chau, Proc. SPIE 2882, Austin,
Texas, USA, 14-15 October, 1996, pp. 79-90.
Youngmin Kim and Dean P. Neikirk
Microsensors embedded in mechanical systems should allow localized measurements,
for example pressure and temperature, without disturbing measurand. For
instance, local measurements will determine dynamic characteristics of the
fluid film in a bearing, allowing bearing performance to be monitored. The
microsensor for pressure measurement could be implemented using optical
interferometry as shown in Figure 1. Pressure applied
to the membrane is measured by detecting the deflection of the membrane.
Advantages of optical measurement include: remote data acquisition can be
achieved without loss of ratio of signal to noise (S/N ratio), pressure
averaging effect reducing sensitivity of piezoresistive pressure sensor
is avoided, and dimensions of device could be much smaller than capacitive
pressure sensor.
The Fabry-Perot cavity and optical fiber are used as the sensing element
and interconnect, respectively. The cavity is monolithically built by etching
a sacrificial layer that lies between dielectric film stacks (Figure
2). The gap of the cavity can be precisely adjusted by controlling the
thickness of a sacrificial layer grown using LPCVD. With LPCVD, multiple
dielectric films (consisting of silicon dioxide and silicon nitride) can
be deposited to form wavelength selective dielectric mirrors. The technique
allows for batch fabrication of the pressure sensors with excellent alignment
and parallelism of the two mirrors in the cavity. This alignment has been
a problem in previous devices which use a hybrid assembly technique.
Fabry-Perot cavity-based sensors have been widely used for their versatility;
for example they have been used to sense both pressure and temperature [1-4].
This kind of sensor detects changes in optical path length induced by either
a change in the refractive index or a change in physical length of the cavity.
Micromachining techniques make Fabry-Perot sensors more attractive by reducing
the size and the cost of the sensing element. Another advantage of the miniature
Fabry-Perot sensor is that low coherence light sources, such as light emitting
diodes (LEDs), can be used to generate the interferometric signal, since
the optical length of the miniature cavity is of the same order as the wavelength
of the light, and shorter than the coherence length of a typical LED.
In these devices the cavity mirrors can be either dielectric layers or metal
layers deposited or evaporated during the manufacturing process. The thickness
of each layer must be tightly controlled to achieve the target performance
of a sensor. However, there are unavoidable errors in thickness even though
techniques of thickness control for thin films have rapidly improved [5].
For Fabry-Perot optical interference filters it has long been recognized
that the performance of the filter is greatly influenced by random thickness
variations in the films used [6,7]. For instance, the resonant wavelength
is very sensitive to thickness variations. Unlike Fabry-Perot filters, in
which the operating regime is usually near the resonance of a high finesse
cavity, most Fabry-Perot sensors operate in a transition region between
two resonances of a low finesse cavity. We have considered the impact of
manufacturing errors on the performance of such sensors. In particular,
we have considered how random errors in thickness of the cavity mirrors
influence the accuracy with which gap can be measured. We have found that
an optimum combination of initial gap and mechanical travel of the cavity
exists for a given mirror design which gives the least variation in response
curve. This should allow the high
yield fabrication of sensors with a specified level of measurement accuracy
[8].
We have recently completed fabrication of a surface micromachined Fabry-Perot
pressure transducer. An air-gap cavity has been formed by etching a sacrificial
layer selectively using windows in the "top" or "front"
side mirror, as shown in Fig. 2 and Fig.
3. Polysilicon is used as a sacrificial layer and KOH as the etching
solution. Depending on the geometry of the polysilicon sacrificial layer
and the geometry of the etch windows, it was observed that membranes formed
by undercut etching tend to be fractured when they become larger than 50
microns. This phenomenon has been reported elsewhere [9]. The fracture of
the membrane is believed to occur at stress concentration points in the
membrane that are determined by the shape of the windows. Stress induced
bending of the top mirror must also be avoided in the optically active areas;
this can be accomplished even in devices larger than 50 microns by carefully
selecting the shape and placement of the windows, as shown in Fig.
3.
Optical measurements have been made on the device shown in Fig.
3 to verify the accuracy of our plane wave models for the Fabry-Perot
cavity. Future devices will use sacrificial etch windows placed in the lower
membrane, allowing the poly etch to be performed through the back access
hole. This will produce a top membrane that is completely sealed, as required
for our bearing applications. Initial measurements have been made in the
configuration shown in Fig. 3. This configuration does
not have optimum sensitivity since the membrane that bends (the lower membrane)
is pinned at its edges, thus producing no change in interference when pressure
is applied. Even so, Fig. 4 clearly shows the impact
of applied pressure on the optical reflectivity of the cavity. Comparison
between our model and the measurements is quite good, indicating the validity
of the simple plane wave approach used to calculate the characteristics
of the Fabry-Perot cavity.
1. B. Halg, "A silicon pressure sensor with a low-cost contactless
interferometric optical readout," Sensors and Actuators A, vol.
30, pp. 225- 229, 1992.
2. J. P. Dakin, C. A. Wade, and P. B. Withers, "An optical fiber pressure
sensor," SPIE Fiber optics '87:Fifth International Conference on
Fiber optics and Opto-electronics, vol. 734, pp. 194 - 201, 1987.
3. C. E. Lee and H. F. Talyor, "Fiber-optic Fabry-Perot Temperature
Sensor Using a Low-Coherence Light Source," Journal of Lightwave
Technology, vol. 9, pp. 129 - 134, 1991.
4. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz,
"Development of medical pressure and temperature sensors employing
optical spectrum modulation," IEEE Trans. on Biomedical Engin.,
vol. 38, pp. 974 - 980, 1991.
5. H. A. Macleod, Thin-film optical filters. New York: McGraw-Hill,
1986.
6. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, and P. Roche, "Optical
filters: monitoring process allowing the auto-correction of thickness errors,"
Thin Solid Films, vol. 13, pp. 285 - 290, 1972.
7. H. A. Macleod, "Thin film narrow band optical filters," Thin
Solid Films, vol. 34, pp. 335 - 342, 1976.
8. Y. Kim and D. P. Neikirk, "Design for Manufacture of Micro Fabry-Perot
Cavity-based Sensors," submitted to Sensors and Actuators A,
1994.
9. O. Tabata, K. Shimaoka, and S. Sugiyama, "In Situ Observation and
Analysis of wet etching process for Microelectromechanical Systems,"
Proc. IEEE Workshop on Microelectromechanical Systems, 1991, pp.
99-102.
Figure 1: Schematic diagram illustrating
an optical-interrogated Fabry-Perot pressure sensor interconnectd via an
optical fiber.
Figure 2: Cross-sectional SEM of a air-gap
Fabry-Perot cavity fabricated using surface micromachining.
Figure 3: Photomicrograph (top view)
and cross-sectional diagram of an air-gap Fabry-Perot cavity formed by surface
micromachining. The top and bottom mirrors for the cavity are silicon dioxide/silicon
nitride dielectric stacks and the sacrificial layer is polysilicon. Optical
access is provided by bulk-micromachining through the back of the wafer
using standard anisotropic etch procedures. An optical fiber is then inserted
into the hole, and the reflected light intensity monitored.
Figure 4: Reflectance of a FP cavity
pressure sensor as a function of pressure. A multimode optical fiber was
used as the interconnect and a He-Ne laser operating at a wavelength of
633 nm was used as a light source.