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Abstract

A highly accurate, analytic quasi-static model of a microstrip over a semiconductor layer

has been developed.  The model agrees with full-wave calculations in all three modes of

propagation (skin-effect, slow wave, and dielectric quasi-TEM), for both the attenuation constant

α and the propagation constant β over a very wide range of dimension, substrate conductivity, and

frequency.  To achieve this level of agreement, a non-uniform cross-section, transverse resonance

technique has been applied to find the series impedance per unit length of the microstrip

transmission line.

I. Introduction

There has been a great deal of interest in modeling microstrip transmission lines on

semiconducting substrates, including more recent interest in the use of silicon as a microwave

substrate.  Interconnects fabricated on multi-layered semiconductor substrates (such as silicon

dioxide on silicon) produce behavior that is more difficult to predict than that of lines made on

lossless substrates [1, 2].  In 1971 Hasegawa et al. [3] experimentally verified this behavior for a

microstrip on an SiO2-Si substrate.  Here we show that quasi-static analysis can accurately predict
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the behavior of such transmission lines, with excellent agreement between full-wave and static

model over a very wide range of dimension, substrate conductivity, and frequency.

To evaluate the impact of a semiconductor layer of conductivity σ on the transmission line

changes in both electric and magnetic fields must be determined.  For a microstrip-like geometry

(Figure 1) the changes in the electric field are relatively straightforward.  If the frequency of the

applied signal is below the dielectric relaxation frequency of the semiconductor σ/εsemi, the electric

fields behave as if the semiconductor were a metallic sheet.  Conversely, if the frequency is

increased or conductivity decreased until ω > σ/εsemi, the electric fields behave as if the

semiconductor were a lossy dielectric layer.  In the crossover region where ω ~ σ/εsemi, the impact

of the semiconductor conductivity on propagation loss can be very large [4].
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Figure 1:  Cross section of a microstrip on an oxide-semiconductor substrate.

The proper value of series inductance for the transmission line must also be determined.

When the thickness of the semiconducting substrate becomes greater than the skin depth, the so-

called "skin-effect" mode of propagation is encountered [3].  Several previous papers have

recognized that this leads to a reduction in the effective separation between the signal and the

ground plane, as well as inducing significant loss due to series resistance [3, 5].  In contrast, if the

frequency or conductivity is low enough that the skin depth is larger than the thickness of the

semiconductor, the magnetic fields (and thus inductance L) will be determined primarily by the

separation of the microstrip and the true ground plane.
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II. Quasi-Static Model

Many quasi-static models have been proposed for microstrips over semiconducting layers

that adequately describe the impact of finite conductivity on the shunt admittance per unit length Y

of the transmission line [6].  The equivalent circuit used consists of a capacitor Cinsu, representing

the top dielectric layer, in series with a parallel capacitance Csemi and conductance Gsemi,

representing the semiconducting layer.  For simplicity we assume that the top dielectric layer

thickness t is much less than the microstrip width w, so

Cinsu = ε insu

t
w (1)

where εinsu is the dielectric constant of the top insulating layer.  For the semiconducting layer, the

shunt conductance Gsemi scales identically with its capacitance.  Here, we use Wheeler's equations

[7] to find the quasi-static capacitance due to the semiconductor portion of the interconnect, Csemi,

and then the conductance is

Gsemi = σ
ε semi

Csemi (2)

where εsemi is the dielectric constant of the semiconductor.  The use of Wheeler's equations

efficiently accounts for thickness variations of the semiconductor layer h with respect to the

microstrip width.  Thus, the total admittance per unit length for the interconnect is given by

Y = jωCinsuGsemi − ω 2CsemiCinsu

Gsemi + jω(Csemi + Cinsu )
 (3)

The semiconductor layer can also significantly affect the series impedance per unit length Z

of the microstrip.  In general this effect has not been adequately treated in previous quasi-static

models.  Here we use the transverse resonance technique to find the surface impedance of the

ground plane as seen through the semiconductor layer, similar to that previously used by [5].

Previous work assumed that the equivalent transverse transmission line is of uniform cross section

with a short circuit boundary condition representing the perfect ground plane.  A uniform cross

section approximation, however, is invalid for microstrip except for very wide strips (i.e., w >>

h).  If the effective cross section is assumed to vary linearly with depth x (Fig. 1), approximating
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the spreading of the fields between the microstrip and the ground plane, the input impedance of this

non-uniform transmission line is the desired surface impedance, and is given by

Zsemi = 1
jw

jωµ0

jωε semi + σ
0

(2)H ( jβsb) 0

(1)H ( jβsa) − 0

(2)H ( jβsa) 0

(1)H ( jβsb)

0

(2)H ( jβsb) 1

(1)H ( jβsa) − 1

(2)H ( jβsa) 0

(1)H ( jβsb)
(4)

where Hn
(1)  and Hn

(2)  are Hankel functions of the first and second kind, βs = jωµ0 ( jωε semi + σ ) ,

a = hw

2k − w
, and b = a + h.  The distance k is a measure of how much the fields spread before

reaching the ground plane.  The total impedance per unit length for the microstrip is then

Z = Zi

Zsemi + Zi tanh(γ it)
Zi + Zsemi tanh(γ it)

(5)

where Zi = µ0 / ε insu / w  and γ i = jω µ0ε insu .  In the limit of zero conductivity in the

semiconductor, the impedance calculated using eq. 5 should reduce to the inductance of a simple

microstrip line.  For k = 3h + w/2, the inductance calculated using eq. 5 matches that obtained

from Wheeler's equations [7] very closely (within 3 %) over a wide range of h/w  (height-width

ratio range of at least 10-2 to 102), as shown in Fig. 2 below.
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Figure 2:  Comparison of eq. 5 using a “spreading factor” of k = 3h + w/2 to Wheeler’s microstrip
inductance; excellent agreement is obtained over a wide range of microstrip aspect ratio.
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III.  Results

The complex propagation constants of two microstrip line structures have been calculated

using both full-wave and the new quasi-static model.  The spectral domain approach is used for the

full-wave calculations [8].  The full-wave results shown here are essentially identical to the results

of Mesa et al. [9].

The first example is the case considered originally by Hasegawa [3], which has frequently

been used by others as a standard for comparison.  The structure consists of a 160 µm wide

microstrip, on a 1 µm thick silicon dioxide layer, on a 250 µm thick silicon substrate.  Using the

quasi-static model discussed above, the surfaces of attenuation constant, α, and slow wave factor,

β/β0, as a function of both f and σ are shown in Figs. 3 and 4.  Also shown in each figure are

specific contours found using the full-wave calculations.  For the attenuation constant, α  (Fig. 3),

the agreement between the quasi-static and full-wave calculations is excellent over the full four

orders of magnitude of frequency and conductivity shown, covering all three domains of skin-

effect, slow wave, and dielectric quasi-TEM propagation.  For the slow wave factor, β/β0, (Fig.

4) only at the very highest frequency and conductivity is there a noticeable difference (which is still

less than 20 %). In contrast, Mesa et al. [9], who used a more conventional quasi-static model

which did not fully consider the impact of the semiconductor on Z, showed significant

disagreement between full-wave and their quasi-static results, even at low frequency and

conductivity. Since the quasi-static models used in [9] were not correct, there is in fact no support

for their argument that quasi-static models fail to correctly predict the behavior of these

transmission lines. Our improved quasi-static model produces excellent agreement to full wave

calculations, and has been achieved simply by assuring that the quasi-static model is physically

correct, i.e., it accounts for changes in both the shunt admittance per unit length Y  and the series

impedance per unit length Z, including the dimensional non-uniformity in cross section (the “field

spreading”).
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Figure 3: Surface of attenuation constant α versus conductivity and frequency for microstrip
geometry in [3], dotted lines: new quasi-static model for k = 3h + w/2; solid lines: full-wave

results.
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Figure 4: Surface of slow wave factor β/β0 (i.e., the phase constant normalized to the phase
constant of free space) versus conductivity and frequency for microstrip geometry in [3]; dotted

lines: new quasi-static model for k = 3h + w/2; solid lines: full-wave results.
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We have also verified the h/w and conductivity dependence of the model, keeping the

frequency fixed at 1 GHz.  For this example the linewidth is held constant at 50 µm, the thickness

of the silicon dioxide layer is 1 µm, and the thickness of the silicon layer is varied from 10 µm to

1000 µm.  For both the attenuation constant α and phase constant β (phase constant results shown

below in Fig. 5), the quasi-static calculation was typically within 5 % of the full-wave result, for a

range of conductivity from 0.01 to 10 S/cm.  Again, the agreement between the full wave and

quasi-static calculations is due to the use of eqs. 4 and 5 to find the surface impedance of the lossy

semiconductor layer.
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Figure 5: Surface of slow wave factor β/β0 (i.e., the phase constant normalized to the phase
constant of free space) versus conductivity and microstrip geometry at a fixed frequency of 1 GHz;

dotted lines: new quasi-static model for k = 3h + w/2; solid lines: full-wave results.

IV.  Conclusions

An accurate quasi-static model of a microstrip over a semiconductor layer has been

developed.  The model agrees with full wave calculations in all three modes of propagation (skin-

effect, slow wave, and dielectric quasi-TEM), for both the attenuation constant α  and the

propagation constant β.  The agreement between quasi-static and full wave models suggests that
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even for the high frequency, high conductivity case, the behavior of the transmission line is still

approximately quasi-TEM. The closed form equations used here lead to extremely rapid evaluation

of MIS-microstrip transmission line propagation constants.
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