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2. Transmission Lines 

Introduction 

 Transmission lines are electrical structures that are significantly larger in one 

dimension than the others (length).  Unlike lumped elements, the voltage, current, and 

phase varies along the length.  The voltage and current on the transmission line also 

depend on the terminating impedance at the far end and the output impendence of the 

circuit feeding the transmission line. 

 Microstrip transmission lines will be the primary focus of this dissertation.  

The method below could be extended to include other examples of transmission lines 

such as coplanar waveguides, coplanar strips, rectangular waveguide, coaxial cable, 

and twin lead. 

 

Propagation Constant and Characteristic Impedance 

 Transmission lines are usually characterized by two complex numbers: 

propagation constant and characteristic impedance.  All four quantities (i.e., the real 

and imaginary parts of S11 and S21) are needed to fully characterize a line, and the 

quantities can be and often are functions of frequency. 

 The propagation constant, γ, describes the behavior of a signal as it propagates 

down a transmission line.  The real part of γ is usually called the attenuation constant, 

α.  The attenuation constant describes how much the magnitude of a signal is reduced 

as it propagates and is defined as a positive quantity for any passive line because 

negative values indicate gain.  The imaginary part of the propagation constant is β, 

the phase constant.  As the name implies, it describes how the phase changes as a 

signal propagates.  It is also defined as a positive number because negative values 

would indicate propagation in the opposite direction. 

 The characteristic impedance, Z0, relates the voltage to the current on the line 

as a signal propagates.  The real part, R0, is assumed to be positive, but the imaginary 
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part, X0, can be of either sign.  The characteristic impedance in the high frequency 

limit is often described as a single frequency independent real number because at high 

enough frequency, the imaginary part of the characteristic impedance is zero, and the 

real part is a frequency independent, non-zero number. 

 

RLCG 

A transmission line can be divided into infinitesimal sections (which are small 

compared to a wavelength), each with a lumped circuit interpretation, as shown in 

Figure 2.1. The per unit length parameters are the series resistance R, the series 

inductance L, the shunt capacitance C, and the shunt conductance G.  The advantage 

of the circuit interpretation is the frequency independence of the RLCG parameters 

under certain frequency, geometrical, and material constraints. For a microstrip test 

structure with conductor thickness less than a skin depth over the frequency range of 

interest, R, L and C will be frequency independent.  The RLCG parameters can be 

related to the transmission line parameters as shown in Equations (2.1) and (2.2), 

where ω is the frequency in radians.  Equations (2.1) and (2.2) still hold even if the 

RLCG parameters are frequency dependent. 

( )( )CjGLjRj ω+ω+=β+α=γ      (2.1) 
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   Some interesting observations can be made from Equations (2.1) and (2.2).  

At large enough ω, ωL will dominate R and ωC will dominate G.  In this limit, Z0 

will be purely real, and γ will be purely imaginary.  This is referred to as the high 

frequency limit, or the lossless limit, and is a common limit used in microwave design 

and measurement.  Several other limits are possible, but the most common is the RC 

limit which occurs when R is much greater than ωL and ωC is much greater than G.  

In this limit, the real and imaginary parts of Z0 are of equal size, but opposite signs 

and α and β are equal. 
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Figure 2.1: Circuit diagram of an infinitesimal length of transmission line. 

 

Loss Tangent 

When a microstrip transmission line is embedded in a uniform lossy dielectric, 

the current flows along the field lines in the dielectric, so the relation between G and 

C is simply 

δ⋅ω= TanCG .        (2.3) 

Hence, G will linearly increase in frequency for a frequency independent loss tangent 

and capacitance. If a measurement can determine G and C with sufficient precision, 

the loss tangent can be extracted.  The assumption of a frequency independent loss 

tangent sets the ratio of G to ωC and, therefore, sets the dominant term.  By setting 

ωC as the dominant term, Equations (2.1) and (2.2) will never reach certain limits (an 

RG transmission line for example).  

 

Measuring Transmission Lines 

 Transmission lines can be measured in many different ways.  Two common 

methods are impedance spectroscopy (measurement of input impedance) and network 

analysis (measurement of scattering parameters).  Both are steady-state, swept 

frequency measurements that can determine some or all of the RLCG parameters. 
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Impedance Spectroscopy 

 Impedance spectroscopy measures the input impedance of a transmission line 

as a function of frequency.  Impedance analyzers can measure over frequencies 

ranging for 100 Hz to 1.8 GHz, though a given instrument will likely not cover the 

entire frequency range. 

The measurement of input impedance is a 1-port measurement.  This means 

that only one complex number (Zin) is measured at each frequency.  For a 

transmission line, there are four unknowns (R, L, C, and G), so the system is 

underdetermined.  If the transmission line is in a two variable limit (such as the RC 

limit), there are 2 unknowns, and the system is sufficiently determined.   

The input impedance of a transmission line is  

0load

0load
0in ZtanhZ

tanhZZ
ZZ

+γ
γ+

=
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l
       (2.4) 

where Z0 and γl are defined by Equations (2.1) and (2.2) and Zload is the load at the 

far (non-measurement) end of the transmission line.  The far end is often terminated 

with an open circuit that, ideally, has an infinite impedance, and the input impedance 

reduces to  

lγ
=

tanh

Z
Z 0

in  .        (2.5) 

 The load impedance is never a true open because there are end effects at the 

end of the transmission line.  For transmission lines manufactured on silicon wafers, 

microwave probes are needed to measure the lines, and probe pads are needed for the 

probes.  If the transmission line is designed for 2-port measurements, there will be 

probe pads at both ends.  Hence, the termination for a 1-port measurement will be 

approximately the probe pad capacitance. 

 Another method of interpreting input impedance data is to assume that the 

transmission line is in the RC limit and is short enough (|γl|<<1) to justify using a 

lumped circuit model.  In this case, the transmission line consists of only a lumped 
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resistor and a lumped capacitor, as shown in Figure 2.2.  The real part of the input 

impedance is attributed to the resistance, and the imaginary part of the input 

impedance is attributed to the capacitance, allowing Rtotal and Ctotal to be determined 

using 

( ) l⋅== RZrealR intotal  and       (2.6) 

( ) l⋅=
⋅ω

−= C
Zimag

1
C

in
total  .       (2.7) 

The measured quantities are total quantities, not per length quantities, because the 

assumption has been made that the line is short enough to be treated like the circuit in 

Figure 2.2.  The per unit length quantities can be determined by dividing by length.  

Ctotal includes any pad capacitance that is present, but the pad capacitance is only 

important if it is of significant size compared to the total capacitance of the line. 

 

Rtotal

Ctotal

 

Figure 2.2: Circuit diagram of a lumped circuit equivalent for an electrically short, RC transmission 
line. 

 

 Impedance spectroscopy can be a useful method for characterizing 

transmission lines, particularly at frequencies less than 100 MHz.  The major 

drawback of impedance spectroscopy is the 1-port nature of the measurement because 

certain assumptions (lumped RC model) must be true.  Fortunately, the frequencies at 

which the impedance analyzer is most useful are also the frequencies at which the 

required assumptions are most likely to be true. 
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Network Analysis 

 Network analysis involves measuring the scattering parameters (S-parameters) 

of a network using a network analyzer.  S-parameters can completely describe a linear 

n-port network at its terminals without knowledge of the actual network, so the 

network can be treated as a black box described only by its S-parameters.  The ability 

to treat the network as a black box is beneficial since all networks, even ones that are 

nominally well known, contain parasitics that are unknown. 

 Most commercial network analyzers are able to measure networks with two 

ports.  Networks that have more than two ports can only have two ports measured at a 

time.  The other ports are considered terminated with some impedance.  This 

impedance can be intentional, like an attached 50 Ω load, or unintentional, like an 

open.  The results for the two measured ports depend on the terminations of the 

unused ports.  The results are referenced to the impedance of the measuring 

instrument. 

A block diagram of a 2-port network is shown in Figure 2.3.  As the figure 

shows, a port consists of both a signal and a ground.  Four complex S-parameters are 

necessary to fully describe a 2-port network.  Scattering parameters are notated Sxy, 

where x is the port where the measurement is made, and y is the port that is excited.  

When x and y are the same port (S11 and S22), the scattering parameter is a measure of 

the reflection at the port with the other port terminated in the measurement port 

impedance.  When x and y are different (S12 and S21), the scattering parameters are a 

measure of transmission. 

 

2 Port Network

Port 1 Port 2

Vport1 Vport2
+
-

+
-

 

Figure 2.3: Block representation of a 2-port network. 
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A 2x2 matrix is required to fully describe a 2-port network as shown Equation 

(2.8). 
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For a symmetrical and reciprocal network, S11 equals S22 and S21 equals S12.  This 

leaves four quantities (the real and imaginary parts of S11 and S21) that can be used to 

interpret the contents of the network. 

 The S-parameters for a lossy transmission line are given by Equation (2.9) 

[27], where Zdut is the characteristic impedance of the transmission line, γ is the 

propagation constant of the line, l is the length of the line, and Z0 is the port 

impedance of the network analyzer. 
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(2.9) 

Since transmission lines are symmetrical and reciprocal networks, S11 equals S22, and 

S12 equals S21.  The S-parameters are implicitly functions of frequency because γl and 

Z0 may be functions of frequency. 

Real networks containing transmission lines have parasitics that are included 

in the network analyzer measurement, but not in the network model given by 

Equation (2.9).  The S-parameter representation of an assumed parasitic can often be 

derived, but combinations of networks described by S-parameter matrices cannot be 

simply combined by multiplying or adding the matrices together.  Assuming that the 

parasitic is in cascade with the transmission line, a different set of parameters, the 

ABCD parameters, allows the cascading of networks by the multiplication of the 
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ABCD matrices.  Scattering parameters can be converted to ABCD parameters using 

Equations (2.10)-(2.13) or vice versa using equations (2.14)-(2.17) [28].  The 

scattering parameters are all referenced to the port impedance, Z0, of the system to 

which the network is connected. 
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 Network analysis is useful at frequencies between 40 MHz and 110 GHz, 

though a given instrument may not cover the entire range.  Scattering parameters are 

useful because they can fully describe a 2- port transmission line without making the 

assumptions necessary for impedance spectroscopy measurements.  Even with the 

information from 2-ports, the presence of parasitics can increase the number of 

unknowns beyond the number of knowns. 
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Summary 

 Transmission lines can be described by a propagation constant and a 

characteristic impedance or by a distributed circuit model.  In both cases, there are 

four unknowns (assuming length is known); therefore, a measurement needs to 

provide 4 knowns.  If any of the unknowns can be ignored due the frequency range 

used for the measurement, fewer knowns need to be provided by the measurement. 

 Impedance spectroscopy is useful at low frequencies but can only provide two 

measured quantities.  Fortunately, the low frequencies often allow certain parameters 

for the transmission line to be ignored.  For instance, the measurement of input 

impedance can allow the characterization of RC transmission lines. 

 Network analysis is useful at high frequencies and allows the measurement of 

four knowns.  The transmission line can be in any limit or in a regime where are all 

parameters are important.  The introduction of parasitics complicates the extraction of 

the transmission line parameters from the measured S-parameters, but the network 

model can be expanded to accommodate more unknowns.  The expansion of the 

network model does not increase the number of measured quantities, but other 

strategies can be used to overcome this underdetermination. 


