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New dielectrics are being developed for integrated circuit applications,
especialy materials whose dielectric constant is less than that of silicon dioxide (i.e.,
so-called low-k dielectrics). Theloss and relative dielectric constant of these
materials needs to be characterized as a function frequency into the tens of GHz. Itis
desirable to characterize these materialsin test structures with geometries that
resemble integrated circuit interconnects.

This dissertation examines the effect of S-parameter measurement errors on
the characterization of microstrip test structures. First, a perturbation techniqueis
used to analyze the effect of S-parameter errors on the extraction of transmission line
parameters; both magnitude and phase errors are considered. Next, derivative-based
error propagation is used to design test structures that are minimally affected by the
S-parameter errors. Finally, data from on-wafer microstrip test structures are
compared to results from both the perturbation and derivative techniques.

The results of this study indicate that geometry significantly affects the
transmission line parameter extraction error. The method presented designs test
structures that minimize the extraction error for a set of geometrical and material

constraints.
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