Special Processes

- wide variety of processes used in mems fabrication that are not "standard" IC fabrication
 - anisotropic crystallographic etches
 - KOH etch uses a mobile ionic contaminant!
- many processes used in other applications can be adapted
 - laser drilling, laser sintering, injection molding, solid free-form fabrication, electric discharge machining (EDM), etc
 - potential disadvantage for "volume" production: many of these are not "parallel" or "batch" processes

Electrodeposition/electroplating

- classical industrial process used to produce thin coatings
 - almost always metal
 - deposition is from the liquid phase, driven by an electrochemical reaction
 - solution generally contains an ion of the metal (a "salt) that is easily reduced
 - application of a negative bias to object to be plated (i.e., the object is the <u>cathode</u>) supplies the electrons necessary for reduction, resulting in deposition on the cathode
 - local rate of deposition proportional to local current density
 - J-V characteristic exhibits a saturation behavior
 - above a certain applied voltage the current density saturates
 - applied potential above this max tends to drive things like electrolysis of water, rather than reduction of the metal salt
 - porous, poor quality deposition tends to result
 - "black" metal at high current density

Electroplating examples

- copper
 - usually copper sulfate in sulfuric acid
 - Cu²⁺(solution) + 2e⁻ → Cu(solid)
 - few mAmp / cm²
- gold
 - usually gold cyanide solution
 - $Au(CN)_2^- \Leftrightarrow AuCN + CN^-$
 - AuCN + $e^ \rightarrow$ Au(solid) + CN⁻
 - few tens-hundred mA / cm²
- nickel
 - nickel sulfate, boric acid
- masking
 - photoresist or other non-conducting layer can be used
 - for small, complex shapes must be careful about
 - depletion of reactants
 - non-uniformity in current density
 - crystallographic orientation dependent growth rates

Liga

- "Lithographie, Galvanoformung, Abformung"
 - Ehrfeld et al, mid-80's; Guckel at Wisconsin
 - "lithography, electroplating, and molding"
 - really is just masked electroplating, but with high aspect ratio mask layers
 - biggest challenge is the high aspect ratio lithography
 - use X-ray proximity lithography

recall

$$l_{\min} \approx \frac{3}{2}\sqrt{gap\cdot\lambda}$$

- gap ~ thickness of resist ~ 100 μ m
- x-ray wavelength ~ 0.01 μ m
- \Rightarrow *l*_{min} ~ 1µm \Rightarrow 100:1 aspect ratio feature

Anodic oxidation

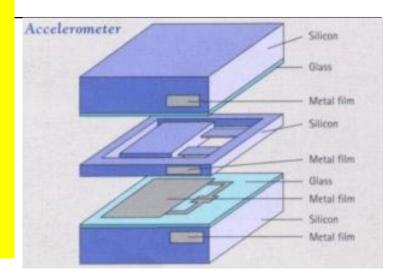
- anodization
 - sample connected to positive terminal of dc supply
 - sample is the anode
 - immersed in an electrolyte
 - usually aqueous, but regardless oxidizing species is almost always (OH)⁻
- basic mechanism
 - injection of holes into Si to form Si²⁺ ("anodic" reaction)
 - attachment of OH^{-} to the Si²⁺ to form Si(OH)₂ (oxidation step)
 - reaction of the "hydrated silica" to form oxide and hydrogen
- overall reaction for silicon oxidation
 - Si + 2h⁺ + 2H₂O \rightarrow SiO₂ + 2H⁺ + H₂
 - holes supplied by bias supply
 - H⁺ migrates to cathode, ultimately produces H_2 at cathode

Anodic oxidation kinetics

- constant voltage bias
 - thickness builds exponentially in time to a final asymptotic value
 - $x = x_{\infty} (1 e^{-t/\tau})$
 - for silicon $x_{\infty} \sim 3\text{\AA}/\text{V}$
 - i.e., for V =1000V the final thickness would be about 0.3 μm
- constant current bias
 - thickness is linearly increasing in time
 - voltage also increasing in time
 - still have $x_{\infty} \sim 3\text{\AA}/V$

Bonding processes

- general requirements
 - TCE match for dissimilar materials
- adhesives
 - "bond line" thickness, long term hermeticity, out-gassing
 - single component, multi-component, aerobic, anaerobic, UVcurable
- metal-glass seals
 - with appropriate glass and metal choice extremely high quality bonds can be formed, but usually requires T ~ 1000°C
- silicon silicon fusion bonding
 - usually fairly high temperature: ~1000C
 - surfaces should be hydrophilic, interaction via "oxide" at interface


Anodic bonding

- example: silicon to Pyrex 7740
 - ~ 400°C, ~ 1kV applied voltage
 - reasonable TCE match
 - glass is ionic conductive at moderate temperatures
 - current does flow, but electrode contacts are non-injecting
 - at constant voltage, initial current is high (~mA/cm²), decays with time
 - leads to depletion layer formation at silicon glass interface
 - use electric field helps provide force to pull mating surfaces together
 - actual bond via oxidation of silicon surface intermixing with glass surface

Technical Data

Wafer/Substrate Parameter:Up to 150mm Max. wafer stack thickness 4 mm Wafer/Substrate Configuration: Double stack: Silicon/Glass, Silicon/Silicon Triple stack: Any combination of Silicon and Glass Pressure Chamber: Over pressure: 2 bar (29 psi) Vacuum: 5 E-3 mbar – standard 1 E-5 mbar high vacuum optional Heater: 550 °C max. Voltage: 0 - 1200V / 50 mA optional up to 2000V / 50mA and 250V / 3A Contact Pressure: Up to 3.4 kN (765 lbf) optional up to 7 kN max (1570 lbf)

wafer bonding

Drying

- problem: for two closely spaced layers during rinsing and subsequent drying capillary forces may cause collapse and sticking (stiction)
- methods
 - critical point drying
 - at appropriate temperature, pressure liquid and gas are "same": supercritical region of phase diagram
 - example: CO₂: T > 31.1°C, P > 72.8 atm
 - phase change drying
 - freeze, then sublime
 - low surface tension rinsing
 - alcohol
 - surface treatments