Silicon as a mechanical material

e classic reference in the field:

— K.E. Petersen "Silicon as a Mechanical Material", Proceedings
of the IEEE, Vol. 70, No.5, May 1982.

* http://robotics.eecs.berkeley.edu/~tahhan/MEMS/petersen/mems__
petersen.htm

— tenants:

« silicon is abundant, inexpensive, and can be produced in
extremely high purity and perfection;

silicon processing based on very thin deposited films which are
highly amenable to miniaturization;

definition and reproduction of the devices, shapes, and patterns,
are performed using photographic techniques that have already
proved of being capable of high precision;

« silicon microelectronic (and therefore also mems) devices are
batch-fabricated.




Thermal properties

thermal diffusion equation
pLC o¢g
K ot

@is temperature change relative to ambient
p is material density
C is specific heat (units: energy - mass-1 - kelvin 1)
K is thermal conductivity (units: power - distance -1 - kelvin -1)
If gwas a voltage this looks a lot like an electrical
problem...

or if was a concentration this looks a lot like a diffusion
problem for constant thermal diffusivity D = k/pC
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1-d (uniform) heat flow problem

 heat flow along z-axis, uniform in x-y plane

power flow —




1-d “sinusoidal” heat flow

« let's assume the power flowing from the “source” end of
the bar is sinusoidally varying in time

power flow —




Thermal diffusion length

 so form of 1-d solution to thermal diffusion equation is

Qi@ - vz

¢=0aQ,
« the “complex thermal propagation constant” is
v = \/ j [olp [T

K

e units: {[sec? - mass - distance 3 - energy - mass ‘1 - kelvin-1]/
. . 1
[energy - sec 1 - distance 1 - kelvin 1]} 72

= (distance) 1
— thermal diffusion lengthis just 1/y
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Thermal “transmission line”

this is the same solution you would get from solving a
distributed circuit that looks like

R = 0z
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to solve need the “per unit length series impedance” Z and
“per unit length shunt admittance” Y, then y = (ZeY)*
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thermal resistance of a rectangular bar

 thermal — to — electrical analogy
— thermal “input” power (heat) P : current

— temperature rise/drop AT (¢@): voltage
1

t v [K
— C: thermal capacitance per unit length Y = (joo)@)EﬂENBD

— Z: thermal impedance per unit length Z =

« whatis the “thermal input impedance” Z .. Of @ rectangular bar |
long, w wide, and t thick, one end connected to a perfect heat

sink? 2. tanh(y 1)
— from t-line analogy: Z7,...,=Z.()=2, L+ £, Hannly
Z,+ Z, Ganh(y)

— from t-line analogy Z, = (Z/Y)*
— for a perfect heat sink “load”Z | =0 (i.e., a short!)

« what is the temperature rise at the “input” end?
— from analogy:
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What does this really mean?

« consider “low frequency”: length of bar much less than
thermal diffusion Iength
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 Jlooks just like the resistance of a bar with “conductivity” K




Low frequency thermal
response

the actual input power looks like

- I:)in = Pave ¢ [ 1+ COS( 00'[) ]
at “low frequency” the temperature “follows” (in phase) the input
power

— temperature rises as power increases

— temperature falls as power decreases

temperature

T

ambient




High frequency thermal response

e consider “high frequency”: length of bar much longer than
thermal diffusion Iength
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High frequency thermal response

(P"highfreq" ~ P DLthermaI — P [ 1 [Gl_])
end t (W K twv '\ 20kpC

—
power density

« the temperature “lags” the power by 45°

 as the frequency increases the magnitude of the
temperature change decreases as vw
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Thermal “spreading resistance” of a
semi-infinite medium

« Assume heated body is spherical, radius r
— time harmonic solution is

: (I‘—I‘O)
[ —
(p — (p r_OeJ L thermal |_ —_ \/ K
0 r thermal

JLp[C

— dc result for temperature rise at surface of sphere of radius r,
heat sink at infinity, input power P
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Time domain thermal solutions
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 recall the thermal diffusion equation is %

. K
e orusing D=——

pLC

 we have the conventional diffusion equation
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— now we can use boundaryl/initial value solutions from general
diffusion theory




Boundary/initial conditions: constant
temperature source diffusion

example: att =0, at x = 0 the temperature of a semi-infinite
slab is set to temperature T, above the ambient temperature
Ta

— recall (X, t) =AT=T-T,
initial conditions

— @X, 0) =0 (sample temperature initially constant at ambient)
boundary conditions

— @0, t) =g, aconstant

— @(, t) = 0 ( sample is infinitely thick)
solution is a complimentary error function

ertoly) = 1 - %T J.Oyexp(_zz)dz @lx, t) = Serfc%%

— note argument is x/2VDt
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Constant diffusivity results

 solutions to the diffusion equation A constant source
— “constant source”

o “unlimited supply” of
thermal power

» erfc shape

tg>t3>to>11

concentration

tpta t t4

>
distance x

— diffusion length:




gaussian and erfc profiles

1x10°3

1x1071

1x1072

1x1073

1x10™4

1x107°

1x1076

1x10°7

concentration normalized to Ngtace

1x1078
0.005 1.01.52.0253.03.5 4.0

argument “z" = x /2 Dt




Thermal expansion and thermal
property values

 temperature coefficient of thermal expansion,
a =102

TCE, a
; - L EBTQ tant P
— for sample of length L, fractional change in length onsten

for change in temperature

Density Thermal Thermal Specific
(g/cm3)  Conductivity Expansion Heat
(W/cm°C) (10%/°C) (J/gK)

Diamond

AlLLO,

SO,
S
Al




Mechanical properties

« consider elastic media: “Hooke’s law” applies
— restoring force is proportional to displacement
« consider a bar under longitudinal tension or compression
e under tension
— length increases

— Cross sectional area decreases

— note TOTAL volume can increase or decrease, depending on material
constants!

« relation between stress and strain
— stress (longitudinal) = force per unit area (units of pressure!)
— strain: fractional change in length oL/L (dimensionless)
— Young's modulus E = stress / strain (units of force per area)

o stress = EGﬁL—L

Young’s modulus is the stress you would have to
apply to double the length of the bar (l.e., 8L =1L)

http://www.britannica.com/seo/y/youngs-modulus/




Poisson’s ratio

e consider a bar under longitudinal tension or compression
e under tension
— length increases: Young's modulus
— ALSO: cross sectional area decreases
— this constitutes a transverse strain dW/W
— Poisson’s ratio v = transverse strain / longitudinal strain
« dimensionless (since both strains are dimensionless)
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overall volume change

assume bar subjected to longitudinal tensile stress

V O (L+aL)fw-dwW)* = (L+6L)[%N2—2W[65W+ [ow] E

[] 2ndorder =0 [ |

= (L+oL)dwW2-2Ww@BW)=  LOW? - 2WEBWIL + 5L (W2 - 2W 0 SWBL
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[ unstrained volume ond order = 0
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volume change
= LIW? + W2 BL [{L - 209)

%r_j
<0if v>05
>0if v<0.5

« v >0.5:total volume DECREASES under longitudinal tensile
stress

e v<0.5: volume INCREASES




Young’s modulus and Poisson’s ratio of
“common” materials

units

— 10% pounds per square inch (psi) = mega-psi
= 6.89x10° Newton/m? = 6.89 gigaPascal

IS temperature dependent

material

Young’s
modulus
(@ 300K)
(GigaPascal)

Poisson’s ratio

diamond

1000

0.067

silicon

200

0.21

SiO2

70

0.17

Al203
(sapphire)

0.23

Iron

Aluminum




Static beam equations

simple beam L long, w wide, t thick
— beam:L>>wandt

cantilever beam: supported at one end only
— point force F at position a
— displacement y at position X

_ F [X*(3@-x) x<a
y(X)_ 2
6(ED R°[3x -a) x>a

_ Eis Young’s modulus beam calculator at:

_ _ _ _ http://www.ecalcx.com/beamanalysis/beamcantpoi
— lis bending moment of inertia

nt_in.asp
- for arectangular cross section I is other calculators at: http://www.ecalcx.com/

|:imv[ﬂ3
12

— note maximum displacement is at position L

mE—EHW[ﬁB[{LZ - a)

— note deflection decreases as cube of thickness




Bending of a simple cantilever beam

« for auniformly distributed force
— W = (total force)/a

W IXK*I6E* -4GEX + X% ) x<a
y(x) = | )

L

C 24[E0 R4 - a) X>a




Beam fixed both ends

 for beam fixed at both ends, point load

y, is the vertical deflection of the beam
ifx<a, y,=-(3M_x*+R,_x3)/(6EIL)
ifx>=a, y,=-(3M_xX*+R,_x>-W(x-a)})/(6EL)

M, _, is the bending moment reaction at the left hand support
M_,=-Fa(L-a)?/L?

R, is the vertical reaction force at the left hand end support
R..o=F(L-a)>(L+2a)/L3

atloady,_,=-(3M_,a?+R_,a*)/(6EL)

Ymax 1S the maximum deflection of the beam :
ifa<L/2, y,x=2Fa2(L-a)}/((3L-2a)?(3EI
ifa>=L/2, y,x=2Fa3(L-a)2/((L+2a)?(3EI

X is the horizontal location maximum vertical deflection

ymax

ifa<l/2 x,. . =L-2L(L-a)/(3L-2a)

ymax

ifa>=L/2, X =2La/(L+2a)

ymax




Beam fixed both ends

« for beam fixed at both ends, distributed uniform load to a
Deflection y, is the vertical deflection of the beam at x:

ifx<a, y,=-(3M_x*+R_x3-wx*/4)/(6EI)
ifx>=a, v,=-(3M_x*+R_x*-wx*/4+w(x-a)/4)/(6EIL)

M,_, is the bending moment reaction at left support:
M, ,=R_L+M_-waz/2

R, is the vertical reaction force at the left support:

Rieo =Wa-R,_

R,., is the vertical reaction force right support:
R,=wa3(2L-a)/2L




Deflection of a circular diaphragm

e much thinner than radius r

« for pinned around circumference, uniform force per unit
area (i.e., uniform pressure P), no built in stress

_ 3Pt f1-v?)

cter T 16EAS




Thin film on thick substrate

o if filmis stressed (stress g), overall curvature results

— E: Young's moduls; v: Poisson’s ratio; t ,: substrate
thickness; t ,.: film thickness; r: radius of curvature

2
oo E ) o2
1-v

t 6 L1

film

[1] A. Sinha, H. Levinstein, and T. Smith, “Thermal Stresses and Cracking Resistance of Dielectric Films on Si Substnartes,”
of Applied Physics, vol. 49, pp. 2423-2426, 1978.

[2] G. Stoney, “The Tension of Metallic Films Deposited by Electroly$tsgteedings of the Royal Society, vol. A82, pp. 172,
19009.




Dynamic response

 response of generic structure is approximately
d°x
m_

dt elastic force
v Hooke’s law

mass* accel forcell velocity
NSL viscousdamping

KX =F

external

— transfer function (Laplace domain)

H(S) ) s? +H§?n53+k
M ] m

— this is the same as an LRC circuit

H(s) = %-C
ENEY:

RCO




