## Silicon as a mechanical material

- classic reference in the field:
  - K.E. Petersen "Silicon as a Mechanical Material", *Proceedings* of the IEEE, Vol. 70, No.5, May 1982.
    - http://robotics.eecs.berkeley.edu/~tahhan/MEMS/petersen/mems\_ petersen.htm
  - tenants:
    - silicon is abundant, inexpensive, and can be produced in extremely high purity and perfection;
    - silicon processing based on very thin deposited films which are highly amenable to miniaturization;
    - definition and reproduction of the devices, shapes, and patterns, are performed using photographic techniques that have already proved of being capable of high precision;
    - silicon microelectronic (and therefore also mems) devices are batch-fabricated.

## **Thermal properties**

thermal diffusion equation

$$\nabla^2 \phi = \frac{\rho \cdot C}{\kappa} \frac{\partial \phi}{\partial t}$$

- $\rho$  is material density
- C is specific heat (units: energy · mass<sup>-1</sup> · kelvin<sup>-1</sup>)
- $\kappa$  is thermal conductivity (units: power · distance<sup>-1</sup> · kelvin<sup>-1</sup>)
- or if φ was a concentration this looks a lot like a diffusion problem for constant thermal diffusivity D = κ/ρC

$$\frac{\partial \phi}{\partial t} = \frac{\kappa}{\rho \cdot C} \nabla^2 \phi$$

### 1-d (uniform) heat flow problem

heat flow along z-axis, uniform in x-y plane



## 1-d "sinusoidal" heat flow

 let's assume the power flowing from the "source" end of the bar is sinusoidally varying in time



Dept. of ECE, Univ. of Texas at Austin

#### **Thermal diffusion length**

so form of 1-d solution to thermal diffusion equation is

$$\phi = \phi_{o} e^{j \cdot \omega \cdot t - \gamma \cdot z}$$

the "complex thermal propagation constant" is

$$\gamma = \sqrt{\frac{j \cdot \omega \cdot \rho \cdot C}{\kappa}}$$

- units: { [sec<sup>-1</sup> · mass · distance<sup>-3</sup> · energy · mass<sup>-1</sup> · kelvin<sup>-1</sup> ] / [energy · sec<sup>-1</sup> · distance<sup>-1</sup> · kelvin<sup>-1</sup> ] } <sup>1/2</sup>
  - = (distance) <sup>-1</sup>
  - $-\,$  thermal diffusion length is just 1 /  $\gamma$

$$L_{\text{thermal}} = \sqrt{\frac{\kappa}{j \cdot \omega \cdot \rho \cdot C}}$$

## **Thermal "transmission line"**

 this is the same solution you would get from solving a distributed circuit that looks like



 to solve need the "per unit length series impedance" Z and "per unit length shunt admittance" Y, then γ = (Z•Y)<sup>1/2</sup>

$$Z = \frac{1}{t \cdot w \cdot \kappa} \qquad \gamma = \sqrt{\frac{(j\omega) \cdot \rho \cdot t \cdot w \cdot C}{t \cdot w \cdot \kappa}} = \sqrt{\frac{(j\omega) \cdot \rho \cdot C}{\kappa}}$$
$$Y = (j\omega) \cdot \rho \cdot t \cdot w \cdot C$$

#### thermal resistance of a rectangular bar

- thermal to electrical analogy
  - thermal "input" power (heat) P : current
  - temperature rise/drop  $\Delta T$  ( $\phi$ ): voltage
  - Z: thermal impedance per unit length

$$Z = \frac{1}{t \cdot w \cdot \kappa}$$
$$Y = (j\omega) \cdot \rho \cdot t \cdot w \cdot C$$

- C: thermal capacitance per unit length

what is the "thermal input impedance" Z<sub>thermal</sub> of a rectangular bar *l* long, w wide, and t thick, one end connected to a perfect heat sink?

- from t-line analogy: 
$$Z_{\text{thermal}} = Z_{\text{in}}(l) = Z_{\text{o}} \cdot \frac{Z_{\text{L}} + Z_{\text{o}} \cdot \tanh(\gamma \cdot l)}{Z_{\text{o}} + Z_{\text{L}} \cdot \tanh(\gamma \cdot l)}$$

- from t-line analogy  $Z_o = (Z/Y)^{\frac{1}{2}}$
- for a perfect heat sink "load"  $Z_L = 0$  (i.e., a short!)
- what is the temperature rise at the "input" end?
  - from analogy:

$$\phi_{\text{end}} = \mathbf{P} \cdot \mathbf{Z}_{\text{thermal}} = \mathbf{P} \cdot \sqrt{\frac{Z}{Y}} \cdot \frac{\mathbf{0} + \sqrt{Z/Y} \cdot \tanh\left(\sqrt{Z \cdot Y} \cdot l\right)}{\sqrt{Z/Y} + \mathbf{0} \cdot \tanh\left(\sqrt{Z \cdot Y} \cdot l\right)} = \frac{\mathbf{P}}{\mathbf{t} \cdot \mathbf{w}} \cdot \sqrt{\frac{1}{\mathbf{j} \cdot \mathbf{\omega} \cdot \mathbf{\kappa} \cdot \mathbf{\rho} \cdot \mathbf{C}}} \cdot \tanh\left(\sqrt{\frac{\mathbf{j} \cdot \mathbf{\omega} \cdot \mathbf{\rho} \cdot \mathbf{C}}{\kappa}} \cdot l\right)$$

#### What does this really mean?

 consider "low frequency": length of bar much less than thermal diffusion length

$$\gamma \cdot l = \frac{l}{L_{thermal}} = \sqrt{\frac{j \cdot \omega \cdot \rho \cdot C}{\kappa}} \cdot l \ll 1$$

$$\phi_{end} = \frac{P}{t \cdot w} \cdot \sqrt{\frac{1}{j \cdot \omega \cdot \kappa \cdot \rho \cdot C}} \cdot \tanh\left(\underbrace{\sqrt{\frac{j \cdot \omega \cdot \rho \cdot C}{\kappa}} \cdot l}_{\ll (<1)}\right) \approx \frac{P}{t \cdot w} \cdot \sqrt{\frac{1}{j \cdot \omega \cdot \kappa \cdot \rho \cdot C}} \cdot \sqrt{\frac{j \cdot \omega \cdot \rho \cdot C}{\kappa}} \cdot l$$

$$\approx \arg ument} \phi_{end}^{"low freq"} \approx \frac{P}{t \cdot w} \cdot \frac{l}{\kappa}$$

• looks just like the resistance of a bar with "conductivity"  $\kappa$ 

## Low frequency thermal response

$$\Delta \mathbf{T} = \frac{l}{\mathbf{t} \cdot \mathbf{w} \cdot \mathbf{\kappa}} \mathbf{P}$$

- the actual input power looks like
  - $P_{in} = P_{ave} \cdot [1 + \cos(\omega t)]$
- at "low frequency" the temperature "follows" (in phase) the input power
  - temperature rises as power increases
  - temperature falls as power decreases



## High frequency thermal response

 consider "high frequency": length of bar much longer than thermal diffusion length

$$\gamma \cdot l = \frac{l}{L_{thermal}} = \sqrt{\frac{j \cdot \omega \cdot \rho \cdot C}{\kappa}} \cdot l \gg 1$$

$$\phi_{end} = \frac{P}{t \cdot w} \cdot \sqrt{\frac{1}{j \cdot \omega \cdot \kappa \cdot \rho \cdot C}} \cdot \tanh\left(\underbrace{\sqrt{\frac{j \cdot \omega \cdot \rho \cdot C}{\kappa}} \cdot l}_{\approx 1}\right)_{\approx 1} \approx \frac{P}{t \cdot w} \cdot \sqrt{\frac{1}{j \cdot \omega \cdot \kappa \cdot \rho \cdot C}}_{L_{thermal}/\kappa}$$

$$\phi_{end}^{"high freq"} \approx \frac{P}{\underbrace{t \cdot w}_{power density}} \cdot \frac{L_{thermal}}{\kappa} = \frac{P}{t \cdot w} \cdot \sqrt{\frac{1}{2\omega\kappa\rho C}} \cdot (1 - j)$$

## High frequency thermal response



- the temperature "lags" the power by 45°
- as the frequency increases the magnitude of the temperature change decreases as  $\sqrt{\omega}$



## Thermal "spreading resistance" of a semi-infinite medium

- Assume heated body is spherical, radius r<sub>o</sub>
  - time harmonic solution is

$$\phi = \phi_{o} \frac{r_{o}}{r} e^{j \cdot \omega \cdot t - \frac{(r - r_{o})}{L_{thermal}}} \qquad \qquad L_{thermal} = \sqrt{\frac{\kappa}{j \cdot \omega \cdot \rho \cdot C}}$$

 dc result for temperature rise at surface of sphere of radius r<sub>o</sub>, heat sink at infinity, input power P

$$\Delta T = \frac{1}{\underbrace{2\pi \cdot \kappa \cdot r_{o}}_{\text{thermal spreading}}} P$$

12

#### **Time domain thermal solutions**

• recall the thermal diffusion equation is

• or using 
$$D = \frac{\kappa}{\rho \cdot C}$$

• we have the conventional diffusion equation

$$\frac{\partial \phi}{\partial t} = \mathbf{D} \cdot \nabla^2 \phi$$

now we can use boundary/initial value solutions from general diffusion theory

13

 $\frac{\partial \phi}{\partial t} = \frac{\kappa}{\rho \cdot C} \nabla^2 \phi$ 

## Boundary/initial conditions: constant temperature source diffusion

- example: at t = 0, at x = 0 the temperature of a semi-infinite slab is set to temperature T<sub>o</sub> above the ambient temperature T<sub>a</sub>
  - recall  $\phi$  (x, t) =  $\Delta T$  = T T<sub>a</sub>
- initial conditions
  - $-\phi(x, 0) = 0$  (sample temperature initially constant at ambient)
- boundary conditions
  - $-\phi(0, t) = \phi_{S}$ , a constant
  - $-\phi(\infty, t) = 0$  (sample is infinitely thick)
- solution is a complimentary error function

$$\operatorname{erfc}(\mathbf{y}) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\mathbf{y}} \exp(-z^2) dz \qquad \phi(\mathbf{x}, t) = \phi_s \operatorname{erfc}\left(\frac{\mathbf{x}}{2\sqrt{Dt}}\right)$$

- note argument is  $x/2\sqrt{Dt}$ 

$$\frac{\mathbf{x}}{2\sqrt{\mathbf{D}\cdot\mathbf{t}}} = \frac{\mathbf{x}}{2\sqrt{\frac{\kappa}{\boldsymbol{\rho}\cdot\mathbf{C}}\cdot\mathbf{t}}}$$

#### **Constant diffusivity results**

- solutions to the diffusion equation
  - "constant source"
    - "unlimited supply" of thermal power
    - erfc shape



- diffusion length: 
$$l \approx \sqrt{D \cdot t} = \sqrt{\frac{\kappa}{\rho \cdot C}} \cdot t$$

15

#### gaussian and erfc profiles



argument "z" = x /  $2\sqrt{Dt}$ 

# Thermal expansion and thermal property values

- temperature coefficient of thermal expansion, TCE,  $\boldsymbol{\alpha}$ 

$$\alpha = \frac{1}{L} \cdot \left(\frac{\partial L}{\partial T}\right)_{\text{constant P}}$$

xas at Austin

(

 for sample of length L, fractional change in length for change in temperature

|                                                                      |                                | Density<br>(g/cm <sup>3</sup> ) | Thermal<br>Conductivity<br>(W/cm°C) | Thermal<br>Expansion<br>(10 <sup>-6</sup> /°C) | Specific<br>Heat<br>(J / g K) |  |
|----------------------------------------------------------------------|--------------------------------|---------------------------------|-------------------------------------|------------------------------------------------|-------------------------------|--|
|                                                                      | Diamond                        | 3.5                             | 20                                  | 1.0                                            | 0.50                          |  |
|                                                                      | Al <sub>2</sub> O <sub>3</sub> | 4.0                             | 0.5                                 | 5.4                                            | 0.77                          |  |
|                                                                      | Iron                           | 7.8                             | 0.803                               | 12                                             | 0.4                           |  |
|                                                                      | SiO <sub>2</sub>               | 2.5                             | 0.014                               | 0.55                                           | 0.74                          |  |
|                                                                      | Si                             | 2.3                             | 1.57                                | 2.33                                           | 0.71                          |  |
|                                                                      | Al                             | 2.7                             | 2.36                                | 25                                             | 0.88                          |  |
| kirk © 2001, last update February 21, 2001 17 Dept. of ECE, Univ. of |                                |                                 |                                     |                                                |                               |  |

## **Mechanical properties**

- consider elastic media: "Hooke's law" applies
  - restoring force is proportional to displacement
- consider a bar under longitudinal tension or compression
  - under tension
    - length increases
    - cross sectional area decreases
    - note TOTAL volume can increase or decrease, depending on material constants!
- relation between stress and strain
  - stress (longitudinal) = force per unit area (units of pressure!)
  - strain: fractional change in length  $\delta$ L/L (dimensionless)
  - Young's modulus E = stress / strain (units of force per area)
    - i.e.,

stress = 
$$E \cdot \frac{\delta L}{L}$$

Young's modulus is the stress you would have to apply to double the length of the bar (I.e.,  $\delta L = L$ )

http://www.britannica.com/seo/y/youngs-modulus/

## **Poisson's ratio**

- consider a bar under longitudinal tension or compression
  - under tension
    - length increases: Young's modulus
    - ALSO: cross sectional area decreases
    - this constitutes a transverse strain  $\delta$ W/W
  - Poisson's ratio v = transverse strain / longitudinal strain
    - dimensionless (since both strains are dimensionless)

$$\nu = \left(\frac{\delta W}{W}\right) / \left(\frac{\delta L}{L}\right)$$

$$\frac{\delta W}{W} = \frac{v}{E} \cdot (\text{longitudinal stress})$$

#### overall volume change

assume bar subjected to longitudinal tensile stress

$$V \propto (L + \delta L) \cdot (W - \delta W)^{2} = (L + \delta L) \cdot \left( W^{2} - 2W \cdot \delta W + \underbrace{[\delta W]^{2}}_{2nd \text{ order } \approx 0} \right)$$
  
$$\approx (L + \delta L) \cdot (W^{2} - 2W \cdot \delta W) = \underbrace{L \cdot W^{2}}_{\propto \text{ unstrained volume}} - 2W \cdot \delta W \cdot L + \delta L \cdot W^{2} - 2W \cdot \underbrace{\delta W \cdot \delta L}_{2nd \text{ order } \approx 0}$$
  
$$\approx \underbrace{L \cdot W^{2}}_{\approx \text{ unstrained volume}} - 2W \cdot \delta W \cdot L + \delta L \cdot W^{2} = L \cdot W^{2} + W^{2} \cdot \delta L \cdot \left( 1 - 2 \cdot \frac{\delta W}{W} \cdot \frac{L}{\delta L} \right)$$
  
volume change

$$= \mathbf{L} \cdot \mathbf{W}^{2} + \mathbf{W}^{2} \cdot \delta \mathbf{L} \cdot \underbrace{(1 - 2 \cdot \mathbf{v})}_{<0 \text{ if } \mathbf{v} > 0.5}$$

- v > 0.5: total volume DECREASES under longitudinal tensile stress
- v < 0.5: volume INCREASES

## Young's modulus and Poisson's ratio of "common" materials

- units
  - 10<sup>6</sup> pounds per square inch (psi) = mega-psi
     = 6.89x10<sup>9</sup> Newton/m<sup>2</sup> = 6.89 gigaPascal
- is temperature dependent

| material            | Young's<br>modulus<br>(@ 300K)<br>(GigaPascal) | Poisson's ratio |
|---------------------|------------------------------------------------|-----------------|
| diamond             | 1000                                           | 0.067           |
| silicon             | 200                                            | 0.21            |
| SiO2                | 70                                             | 0.17            |
| Al2O3<br>(sapphire) | 500                                            | 0.23            |
| Iron                | 200                                            |                 |
| Aluminum            | 70                                             | 0.34            |

Dean P. Neikirk © 2001, last update February 21, 2001

2'

#### Static beam equations

- simple beam L long, w wide, t thick
  - beam: L >> w and t
- cantilever beam: supported at one end only
  - point force F at position a
  - displacement y at position x

$$y(x) = \frac{F}{6 \cdot E \cdot I} \cdot \begin{cases} x^2 \cdot (3 \cdot a - x) & x < a \\ a^2 \cdot (3 \cdot x - a) & x > a \end{cases}$$

- E is Young's modulus
- I is bending moment of inertia
  - for a rectangular cross section I is

$$\mathbf{I} = \frac{1}{12} \cdot \mathbf{w} \cdot \mathbf{t}^3$$

note maximum displacement is at position L

$$y_{end}^{max} = \frac{F}{6 \cdot E \cdot I} \cdot a^2 \cdot (3 \cdot L^2 - a)$$

note deflection decreases as cube of thickness

beam calculator at: <u>http://www.ecalcx.com/beamanalysis/beamcantpoi</u> <u>nt\_in.asp</u> other calculators at: http://www.ecalcx.com/

а

## Bending of a simple cantilever beam

- for a uniformly distributed force
  - W = (total force) / a



$$y(x) = \frac{W}{24 \cdot E \cdot I} \cdot \begin{cases} x^2 \cdot (6 \cdot a^2 - 4 \cdot a \cdot x + x^2) & x < a \\ a^3 \cdot (4 \cdot x - a) & x > a \end{cases}$$

#### **Beam fixed both ends**



for beam fixed at both ends, point load

 $y_x$  is the vertical deflection of the beam

if x < a,  $y_x = -(3 M_{x=0} x^2 + R_{x=0} x^3) / (6 E I_z)$ 

if x >= a,  $y_x = -(3 M_{x=0} x^2 + R_{x=0} x^3 - W (x - a)^3) / (6 E I_z)$ 

 $M_{x=0}$  is the bending moment reaction at the left hand support  $M_{x=0}$  = - F a ( L - a )² / L²

 $R_{x=0}$  is the vertical reaction force at the left hand end support  $R_{x=0}$  = F ( L - a )^2 ( L + 2 a ) / L^3

at load  $y_{x=a} = - (3 M_{x=0} a^2 + R_{x=0} a^3) / (6 E I_z)$ 

 $\begin{array}{l} y_{max} \text{ is the maximum deflection of the beam :} \\ \text{if } a < L / 2, \ \ y_{max} = 2 \ \text{F} \ a^2 \ ( \ L - a \ )^3 \ / \ (( \ 3 \ L - 2 \ a \ )^2 \ ( \ 3 \ \text{E} \ \text{I}_z \ )) \\ \text{if } a >= L \ / \ 2, \ \ y_{max} = 2 \ \text{F} \ a^3 \ ( \ L - a \ )^2 \ / \ (( \ L + 2 \ a \ )^2 \ ( \ 3 \ \text{E} \ \text{I}_z \ )) \end{array}$ 

 $\begin{array}{l} x_{ymax} \text{ is the horizontal location maximum vertical deflection} \\ \text{if } a < L / 2, \quad x_{ymax} = L - 2 L (L - a) / (3 L - 2 a) \\ \text{if } a >= L / 2, \quad x_{ymax} = 2 L a / (L + 2 a) \end{array}$ 

#### **Beam fixed both ends**

 for beam fixed at both ends, distributed uniform load to a Deflection y<sub>x</sub> is the vertical deflection of the beam at x:

if x < a,  $y_x = -(3 M_{x=0} x^2 + R_{x=0} x^3 - w x^4 / 4) / (6 E I_z)$ 

if x >= a,  $y_x = -(3 M_{x=0} x^2 + R_{x=0} x^3 - w x^4 / 4 + w (x - a)^4 / 4) / (6 E I_z)$ 

 $M_{x=0}$  is the bending moment reaction at left support:  $M_{x=0} = R_{x=L} L + M_{x=L} - w a^2 / 2$ 

 $R_{x=0}$  is the vertical reaction force at the left support:  $R_{x=0}$  = w a -  $R_{x=L}$ 

 $R_{x=L}$  is the vertical reaction force right support:

 $R_{x=L} = w a^3 (2L - a) / 2L^3$ 

W = F/a

а

#### **Deflection of a circular diaphragm**

- much thinner than radius r
- for pinned around circumference, uniform force per unit area (i.e., uniform pressure P), no built in stress

$$\delta_{\text{center}} = \frac{3 \cdot \mathbf{P} \cdot \mathbf{r}^4 \cdot (1 - \nu^2)}{16 \cdot \mathbf{E} \cdot \mathbf{t}^3}$$

## Thin film on thick substrate

- if film is stressed (stress  $\sigma$ ), overall curvature results
  - E: Young's moduls; v: Poisson's ratio; t<sub>sub</sub>: substrate thickness; t<sub>film</sub>: film thickness; r: radius of curvature

$$\sigma \approx \frac{E}{1 - \nu} \cdot \frac{(t_{sub})^2}{t_{film}} \cdot \frac{1}{6 \cdot r}$$

[1] A. Sinha, H. Levinstein, and T. Smith, "Thermal Stresses and Cracking Resistance of Dielectric Films on Si Substrates," *Journal of Applied Physics*, vol. 49, pp. 2423-2426, 1978.

[2] G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis," *Proceedings of the Royal Society*, vol. A82, pp. 172, 1909.

### **Dynamic response**

response of generic structure is approximately



transfer function (Laplace domain)

$$H(s) = \frac{\frac{1}{m}}{s^2 + \left(\frac{b}{m}\right) \cdot s + \frac{k}{m}}$$

- this is the same as an LRC circuit

$$H(s) = \frac{\frac{1}{LC}}{s^2 + \left(\frac{1}{RC}\right) \cdot s + \frac{1}{LC}} = \frac{\omega_o^2}{s^2 + \left(\frac{\omega_o}{Q}\right) \cdot s + \omega_o^2}$$