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• classic reference in the field:
– K.E. Petersen "Silicon as a Mechanical Material", Proceedings 

of the IEEE, Vol. 70, No.5, May 1982. 
• http://robotics.eecs.berkeley.edu/~tahhan/MEMS/petersen/mems_

petersen.htm

– tenants:
• silicon is abundant, inexpensive, and can be produced in 

extremely high purity and perfection; 
• silicon processing based on very thin deposited films which are 

highly amenable to miniaturization; 
• definition and reproduction of the devices, shapes, and patterns, 

are performed using photographic techniques that have already 
proved of being capable of high precision; 

• silicon microelectronic (and therefore also mems) devices are 
batch-fabricated.
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Thermal properties

• thermal diffusion equation

t
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∂
φ∂

κ
⋅ρ=φ∇

– φ is temperature change relative to ambient
– ρ is material density
– C is specific heat (units: energy · mass-1 · kelvin -1)
– κ is thermal conductivity (units:  power · distance -1 · kelvin -1)

• if φ was a voltage this looks a lot like an electrical 
problem…

• or if φ was a concentration this looks a lot like a diffusion 
problem for constant thermal diffusivity D = κ/ρC
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1-d (uniform) heat flow problem

• heat flow along z-axis, uniform in x-y plane
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1-d “sinusoidal” heat flow

• let’s assume the power flowing from the “source” end of 
the bar is sinusoidally varying in time
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Thermal diffusion length

• units: { [sec-1 · mass · distance -3 · energy · mass -1 · kelvin -1 ] / 
[energy · sec -1 · distance -1 · kelvin -1 ] } ½

=  (distance) -1

– thermal diffusion length is just 1 / γ

κ
⋅ρ⋅ω⋅=γ Cj

• so form of 1-d solution to thermal diffusion equation is

ztj
o e ⋅γ−⋅ω⋅φ=φ

• the “complex thermal propagation constant” is

Cj
Lthermal ⋅ρ⋅ω⋅

κ=
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Thermal “transmission line”

• this is the same solution you would get from solving a 
distributed circuit that looks like

κ⋅⋅
δ=
wt

z
R

C⋅δ⋅⋅⋅ρ= zwtC

δz δz δz

…

• to solve need the “per unit length series impedance” Z and 
“per unit length shunt admittance” Y, then γ = (Z•Y)½
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1
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thermal resistance of a rectangular bar

• thermal – to – electrical analogy
– thermal “input” power (heat) P : current
– temperature rise/drop ∆T (φ): voltage

– Z: thermal impedance per unit length

– C: thermal capacitance per unit length

κ⋅⋅
=

wt

1
Z

( ) CwtjY ⋅⋅⋅ρ⋅ω=

• what is the “thermal input impedance” Z thermal of a rectangular bar l
long, w wide, and t thick, one end connected to a perfect heat 
sink?

– from t-line analogy:

• what is the temperature rise at the “input” end?
– from analogy:
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– from t-line analogy Zo = (Z/Y)½

– for a perfect heat sink “load” Z L = 0 (i.e., a short!)

( )
( ) 





⋅

κ
⋅ρ⋅ω⋅⋅

⋅ρ⋅κ⋅ω⋅
⋅

⋅
=

⋅⋅⋅+
⋅⋅⋅+

⋅⋅=⋅=φ l
l

l Cj
tanh

Cj

1

wt

P

YZtanh0YZ

YZtanhYZ0

Y

Z
PZP thermalend



Dean P. Neikirk  © 2001, last update February 21, 2001 8 Dept. of ECE, Univ. of Texas at Austin

What does this really mean?

• consider “low frequency”: length of bar much less than 
thermal diffusion length
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• looks just like the resistance of a bar with “conductivity” κ
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Low frequency thermal 
response

• the actual input power looks like
– Pin = Pave • [ 1 + cos( ωt) ]

• at “low frequency” the temperature “follows” (in phase) the input 
power

– temperature rises as power increases
– temperature falls as power decreases

P
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High frequency thermal response

• consider “high frequency”: length of bar much longer than 
thermal diffusion length
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High frequency thermal response

• the temperature “lags” the power by 45°
• as the frequency increases the magnitude of the 

temperature change decreases as √ω
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Thermal “spreading resistance” of a 
semi-infinite medium

• Assume heated body is spherical, radius ro

– time harmonic solution is
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– dc result for temperature rise at surface of sphere of radius ro, 
heat sink at infinity, input power P
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– now we can use boundary/initial value solutions from general 
diffusion theory

Time domain thermal solutions

• recall the thermal diffusion equation is φ∇
⋅ρ
κ=

∂
φ∂ 2

Ct

C
D

⋅ρ
κ=

φ∇⋅=
∂
φ∂ 2D
t

• or using

• we have the conventional diffusion equation
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Boundary/initial conditions: constant 
temperature source diffusion

• example: at t = 0, at x = 0 the temperature of a semi-infinite 
slab is set to temperature To above the ambient temperature 
Ta

– recall φ (x, t) = ∆T = T – Ta

• initial conditions
– φ(x, 0) = 0  (sample temperature initially constant at ambient)

• boundary conditions
– φ(0, t) = φ S, a constant
– φ(���W�� �����VDPSOH�LV�LQILQLWHO\�WKLFN�

• solution is a complimentary error function
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Constant diffusivity results

• solutions to the diffusion equation
– “constant source”

• “unlimited supply” of 
thermal power

• erfc shape

constant source
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– diffusion length: 
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gaussian and erfc profiles

argument “z” = x / 2 ¥Dt
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Thermal expansion and thermal 
property values

• temperature coefficient of thermal expansion, 
TCE, α

– for sample of length L, fractional change in length 
for change in temperature

PttanconsT

L

L

1
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∂
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SiO2

Si

Al

Density
(g/cm3)

3.5

4.0

7.8

2.5

2.3

2.7

Thermal 
Conductivity
(W/cm°C)

20

0.5

0.803

0.014

1.57

2.36

Thermal 
Expansion
(10-6/°C)

1.0

5.4

12

0.55

2.33

25

Specific 
Heat
(J / g K)

0.50

0.77

0.4

0.74

0.71
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Mechanical properties

• consider elastic media: “Hooke’s law” applies
– restoring force is proportional to displacement

• consider a bar under longitudinal tension or compression
• under tension

– length increases
– cross sectional area decreases
– note TOTAL volume can increase or decrease, depending on material 

constants!

• relation between stress and strain
– stress (longitudinal) = force per unit area (units of pressure!)
– strain: fractional change in length δL/L (dimensionless)
– Young’s modulus E = stress / strain (units of force per area)

• i.e., 

L

L
Estress

δ⋅=

http://www.britannica.com/seo/y/youngs-modulus/

Young’s modulus is the stress you would have to 
apply to double the length of the bar (I.e., δL = L)
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Poisson’s ratio

• consider a bar under longitudinal tension or compression
• under tension

– length increases: Young’s modulus
– ALSO: cross sectional area decreases
– this constitutes a transverse strain δW/W

– Poisson’s ratio ν = transverse strain / longitudinal strain
• dimensionless (since both strains are dimensionless)






 δ






 δ=ν

L
L

W
W

( )stressallongitudin
EW

W ⋅ν=δ
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overall volume change

• ν > 0.5: total volume DECREASES under longitudinal tensile 
stress

• ν < 0.5: volume INCREASES
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assume bar subjected to longitudinal tensile stress
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Young’s modulus and Poisson’s ratio of 
“common” materials

• units
– 106 pounds per square inch (psi) = mega-psi  

= 6.89x109 Newton/m2 = 6.89 gigaPascal
• is temperature dependent
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Young’s 
modulus  

( @ 300K ) 
(GigaPascal) 

 

 
 

Poisson’s ratio 

diamond 1000 0.067 

silicon 200 0.21 

SiO2 70 0.17 

Al2O3 
(sapphire) 

500 0.23 

Iron 200  

Aluminum 70 0.34 
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Static beam equations

• simple beam L long, w wide, t thick
– beam: L >> w and t

• cantilever beam: supported at one end only
– point force F at position a
– displacement y at position x

( )aL3a
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y 22max

end −⋅⋅⋅
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12
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( )



>−⋅⋅
<−⋅⋅

⋅
⋅⋅

=
axax3a

axxa3x

IE6

F
xy

2

2

– E is Young’s modulus
– I is bending moment of inertia

• for a rectangular cross section I is

– note maximum displacement is at position L

beam calculator at: 
http://www.ecalcx.com/beamanalysis/beamcantpoi

nt_in.asp
other calculators at: http://www.ecalcx.com/

– note deflection decreases as cube of thickness
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Bending of a simple cantilever beam

• for a uniformly distributed force
– W = (total force) / a
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Beam fixed both ends

• for beam fixed at both ends, point load

y
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0[ � LV�WKH�EHQGLQJ�PRPHQW�UHDFWLRQ�DW�WKH�OHIW�KDQG�VXSSRUW
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\PD[ LV�WKH�PD[LPXP�GHIOHFWLRQ�RI�WKH�EHDP���
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Beam fixed both ends

• for beam fixed at both ends, distributed uniform load to a
'HIOHFWLRQ�\[ LV�WKH�YHUWLFDO�GHIOHFWLRQ�RI�WKH�EHDP�DW�[�

LI�[���D� \[  �� ����0[ � [� ��5[ � [� � Z�[� ������������(�,] ��
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Deflection of a circular diaphragm

• much thinner than radius r
• for pinned around circumference, uniform force per unit 

area (i.e., uniform pressure P), no built in stress
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Thin film on thick substrate

• if film is stressed (stress σ), overall curvature results
– E: Young’s moduls; ν: Poisson’s ratio; t sub: substrate 

thickness; t film: film thickness; r: radius of curvature

( )
r6

1

t

t

1

E

film

2
sub

⋅
⋅⋅

ν−
≈σ

[1] A. Sinha, H. Levinstein, and T. Smith, “Thermal Stresses and Cracking Resistance of Dielectric Films on Si Substrates,” Journal 
of Applied Physics, vol. 49, pp. 2423-2426, 1978.
[2] G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” Proceedings of the Royal Society, vol. A82, pp. 172, 
1909.
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Dynamic response

• response of generic structure is approximately

{
{ external

laws’Hooke
forceelastic

dampingviscous
velocityforce

NSL
accel*mass

2

2

Fxk
dt

dx
b

dt

xd
m =⋅++

∝
321

( )
m
k

s
m
b

s

m
1

sH
2 +⋅





+

=

( )
2

o
o2

2
o

2 s
Q

s
LC
1

s
RC
1

s

LC
1

sH

ω+⋅




 ω+

ω=
+⋅





+

=

– transfer function (Laplace domain)

– this is the same as an LRC circuit


