## **Microlithography**



### Minimum feature sizes (DRAMS)

trend lines for feature size



### **Overlay errors between two patterns**

• goal: align two "identical" patterns one on top of the other



- what can go wrong??
- 1 : pure registration error
- s: distortion error
  - overlay error: sum of all errors
    - really a statistical quantity
- rule of thumb: total overlay error not more than 1/3 to 1/5 of minimum feature size

### **Image characteristics**

#### contrast

- intensity based: scalar quantity
  - "incoherent" imaging
- electric field based: magnitude AND phase
  - interference effects should be included in "coherent" imaging system
- spatial variations in image
  - measure of how "fast" image varies
    - line pairs per unit distance is "digital" analogy
      - test pattern made up of periodic clear/opaque bars with sharp edges
    - frequency domain analogy: spatial frequency
      - test pattern is sinusoidal variation in optical transparency



### **Resolution in imaging systems**

- diffraction limits passband of system
  - minimum geometry » k l /NA
    - k ~ 0.5 to 1, typically ~0.8
    - 1: exposure wavelength
    - NA: numerical aperature (typically NA = 0.5)



- main difficulties
  - need high NA, low aberrations, short wavelength but:
    - depth of focus ~ 1 / 2(NA)<sup>2</sup>
  - restricted set of transparent materials for 1 = 350nm
  - very difficult to get large field size <u>and</u> high NA

 $NA = n \cdot \sin \theta$ 

### **Basic imaging techniques**



Dean P. Neikirk © 2001, last update February 8, 2001

Dept. of ECE, Univ. of Texas at Austin

# Resolution of Imaging Systems: Spatial Low Pass Filters

- contact
  - "shadow" formation,
    "no" diffraction
- proximity
  - some diffraction,
    "sharp" filter cut-off,
    flat response in
    passband

$$l_{\min} \approx \frac{3}{2}\sqrt{gap\cdot\lambda}$$

 imaging: low pass filter, "smooth" decrease in passband



# Exposure radiation / wavelength choices

- want short wavelength to get small I<sub>min</sub>
- electromagnetic radiation
  - "optical"
    - near UV: high pressure mercury arc lamp
      - g-line: 436 nm
      - i-line: 365 nm
    - mid UV: xenon arc lamps
      - 290-350 nm
    - deep UV: excimer laser
      - 200-290 nm
        - XeCI: 308 nm
        - KrF: 248 nm
        - F<sub>2</sub>: 157 nm
  - x-ray: synchrotron, plasma
    - 0.4- 5 nm
- particles: very short de Broglie wavelength (l = h/mv)
  - electron beam (~50eV electron Æ  $I \approx 1.5A$ )
  - ion beam

## **Basic Mask Structure**



### **Blanks: problem areas**

- surface flatness
  - gravitational sag
    - hold mask vertically rather than horizontally
- optical transparency
  - for wavelengths < ~350nm: quartz</li>
    - for wavelengths < ~200nm can have significant absorption
- thermal expansion
  - for 100 mm separation, 1°C DT
    - soda-lime: 0.9 µm
    - fused silica (quartz): 0.05 μm
    - silicon: 0.2 µm
  - traceable temperature control is essential

### Mask pattern generation

- e-beam pattern generator
  - can expose very small features
    - slow, sequential exposure of pattern
    - ok for mask generation
- absorbing layer : problem areas
  - thin compared to feature width for ease of etching
    - more difficult as dimensions shrink,
    - x-ray exposure requires ~micron thick metal layer: hard to make small!
  - defect density
    - yield formula

$$Y_{single\ level} = \frac{1}{1 + D_o A} \qquad Y_{N\ levels} = \left(\frac{1}{1 + D_o A}\right)^N$$

- D<sub>o</sub>: # of fatal defects/unit area

- A: die area

- mask must be "perfect" so "repair" is essential
  - laser etch / deposition

### Mask Aligner Technology

- Requirements:
  - faithfully reproduce master mask pattern on wafer (low distortion errors, high resolution)
  - allow accurate alignment between pattern on wafer and mask (low registration errors)
    - overlay error = 1/3 1/5 resolution
    - this is a mechanical process!
  - throughput!!!

# **Scanning projection aligners**

- reflective optics
  - wavelength independent ray paths
    - no chromatic aberration
  - difficult to produce object-to-image size change
    - 1:1 mask / wafer pattern
  - low image distortion over only a limited area
    - · requires scanning to cover full mask / wafer





Dean P. Neikirk © 2001, last update February 8, 2001

Dept. of ECE, Univ. of Texas at Austin

### **Scanner performance**

- Performance Specifications for SVG Micralign
  - Resolution
    - 1.25µm lines and spaces, UV-4 (340-440nm)
    - 1.0µm lines and spaces, UV-3 (300-350nm)
  - Machine to Machine overlay
    - ±0.25µm, 125/100mm systems, 98% of data
    - +0.30µm, 150mm systems, 98% of data
  - Throughput
    - 120 wafers per hour, 125/100mm systems
    - 100 wafers per hour, 150mm systems
  - Depth of Focus: ± 6 µm for 1.5 µm lines and spaces
  - Numerical Aperture: 0.167
  - Spectral Range 240nm Through Visible
  - Exposure -10 selectable bands within the range 240-440nm
  - Wafer / Substrate Sizes: 100mm, 125mm, 150mm



# Step and repeat (stepper) lithography systems

- "conventional" refractive optics
  - can produce image smaller than object
  - cannot make lens with sufficient resolution to project image over whole wafer
    - "pixel" count: field size / (I<sub>min</sub>)<sup>2</sup>
      - $-1 \text{ cm}^2 / (0.5 \ \mu\text{m})^2 = 4 \ \text{x} \ 10^8$
    - requires mechanical translation (step) of wafer under lens



# **Stepper performance**

ASM I-line stepper

| Lens |                 | Field<br>Size | Overlay                  | Throughput                                        |
|------|-----------------|---------------|--------------------------|---------------------------------------------------|
| NA   | Reso-<br>lution | Dia-<br>meter | 2pt. Global<br>Alignment | 200mm Wafers<br>70 Exp.,<br>200mJ/cm <sup>2</sup> |
| 0.54 | 0.45<br>μm      | 25.5<br>mm    | <u>&lt;</u> 70 nm        | <u>&gt;</u> 48 wph                                |



#### Nikon Step-and-Repeat Systems NSR-2205EX14C and NSR-2205i14E

|                                     | NSR-2005EX14C                | NSR-2205i14E     |
|-------------------------------------|------------------------------|------------------|
| Resolution                          | 0.25 micron                  | 0.35 micron      |
| Light source                        | KrF excimer laser<br>(248nm) | I -line (365 nm) |
| Reduction ratio                     | 1:5                          |                  |
| Exposure area                       | 22 x 22 mm                   |                  |
| Alignment                           | 50 nm                        |                  |
| accuracy                            |                              |                  |
| Throughput (8 in.<br>(200mm) wafer) | 85 wafers/hr.                | 87 wafers/hr.    |



from: Nikon, http://www.nikon.co.jp/main/eng/ news/dec14e\_97.htm

### Lens performance

 recall that for diffraction limited imaging

 $l_{\rm min} \propto \frac{\lambda}{NA}$ 

- from "High-numerical-aperture optical designs," R. N. Singh, A. E. Rosenbluth, G. L.-T. Chiu, and J. S. Wilczynski, IBM Journal of Research and Development, Vol. 41, No. 1/2, 1997.
  - http://www.almaden.ibm.com/jou rnal/rd/411/singh.html



#### Figure 5

A summary of IBM high-NA lens designs.

### Step and scan

- for smaller features it is hard to maintain low abberation (distortion of image) over full field of view
- scan within each step
- combination of reflective and refractive optics
  - can use short wavelength
  - can produce size reduction from mask to feature





from: Silicon Valley Group, http://svg.com/html/prod.html

Dean P. Neikirk © 2001, last update February 8, 2001

# **Scanning steppers**

#### • ASM Step & Scan system

| Lens            |                 | Field<br>Size | Overlay                  | Throughput               |
|-----------------|-----------------|---------------|--------------------------|--------------------------|
| NA              | Resolu-<br>tion | X & Y         | 2pt. Global<br>Alignment | 200mm Wafers<br>46 Exp., |
| 0.45<br>to 0.63 | 150 –<br>130 nm | 26 X 33<br>mm | <u>≺</u> 40 nm           | 10 mJ/cm <sup>2</sup>    |
|                 |                 |               |                          | oo wpn                   |

ASM Lithography, http://www.asml.com/prodtech/stefr.htm



- SVG MSIII+ Performance Specifications
  - Resolution: 180nm for Grouped Lines
  - Image Reduction: 4x
  - Numerical Aperture: 0.6 to 0.4
  - Alignment / Overlay: mean + 3s = 55nm
  - Wafer Size: 200mm (150mm Capable)
  - Throughput: 390 wph (200mm wafers), 26 fields (26mm x 34mm) @ =40 mj/cm<sup>2</sup>
  - Excimer Laser (1 = 248nm; BW = 0.3 nm)
  - Maximum Field Size: 26mm x 34mm
  - Reticle Size: 6" x 6" x 0.25" thick



from: Silicon Valley Group, http://svg.com/html/prod.html

### **Double-sided alignment**

- for many mems devices patterns exist on BOTH sides of the substrate
  - typically contact aligners in current use
  - EVG double-sided optical system
    - use microscopes indexed mechanically to both sides of wafer
    - requires transparent wafer chuck





http://www.evgroup.com/products/precisionalignment.htm

### **Photoresists**

- negative: exposed regions REMAIN after development
  - one component: PMMA, COP (e-beam resist)
  - two component: Kodak KTFR
  - dominant PR until early 1980's
- positive: exposed regions REMOVED after development
  - one component: acrylates
  - two components: diazoquinone / novolac resin
  - higher resolution, but "slower"
    - largely supplanted negative resists in 80's

### Two component negative resists



- solvent-based developer (xylene)
  - based on differential dissolution rate of "low" and "high" molecular weight polymers
  - problem for small features: swelling of exposed resist in solvent

### **Two component DZN positive resist**



### **Positive resist characteristics**

- base resin + PAC (20 30% by volume)
  - chemical reaction liberates N<sub>2</sub>
    - at high UV intensities N<sub>2</sub> evolution rate can be "explosive"
  - reaction rates sensitive to residual solvent and water content
    - control of pre-bake time & temperature, relative humidity critical
- etch rates in developer:
  - unexposed : base resin : exposed
    - 0.1 nm/sec : 15 nm/sec : 150 nm/sec
- thickness (typical at 5 krpm)
  - 1350 B 0.5 mm
  - 1350 J 1.5 mm
    - thickness depends on
      - v(spin speed)
      - viscosity
- PR is <u>conformal</u> to <u>substrate</u>
- solvents
  - acetone
  - slightly soluble in alcohols

### **Exposure properties**

- full exposure is set by energy threshold
  - time intensity = energy
  - ~linearly increases with resist thickness
    - ~ 20 mJ / µm of thickness

exposed -

unexposed

- unexposed resist is "opaque" to the exposing UV radiation
  - resist bleaches as it exposes



can NOT easily compensate for underexposure by overdevelopment

### **Potential exposure problems**

- "substrate" induced reflections
  - multiple reflections induce standing wave pattern
    - destructive interference: underexposed
    - primarily an issue near an edge
  - for metals, BCs require "zero" tangential E field at interface!
    - can cause underexposure over metals
      - contact windows may shrink



from: Thompson, Willson, & Bowden, Introduction to Microlithography,ACS Symposium Series 219, 1983, p. 45.

2

### **Interference effects**

 step edges also produce non-uniform resist thickness and exposure





from: Thompson, Willson, & Bowden, Introduction to Microlithography,ACS Symposium Series 219, 1983, p. 293.

### **Interference effects**

- fixes
  - post exposure bake
    - try to diffuse exposed PAC
  - AR coating
    - place highly absorbing layer under PR
    - must then be able to pattern AR layer
  - planarize!
- multi-layer resist schemes
  - portable conformal mask (PCM)
    - thin "normal" PR on top of thicker, planarizing deep UV PR
      - expose/develop thin layer normally
      - use as "contact" mask for DUV exposure of underlying layer
  - contrast enhancement materials (CEM)
    - photo-bleachable material with VERY sharp threshold placed <u>above</u> PR
      - for energies below threshold PR is "masked"
      - above threshold CEM becomes transparent, resist below exposed
    - sharpens edges





# Other approaches to high resolution lithography

- e beam systems ("direct write"):
  - high resolution (< 0.2 μm)</li>
  - no mask requirement
  - low throughput
- e beam proximity printers:
  - requires mask but has high throughput potential
- X ray systems (proximity type contact printers):

$$l_{\min} \approx \frac{3}{2} \sqrt{gap \cdot \lambda}$$

- high resolution if 1 is small
  - for g ~ 10 mm, l ~ 10 Å ?  $I_{min}$  ~ 0.15 mm
- may also be overlay limited
  - not clear if sub 0.2-ish micron possible
- mask technology very complex
- low throughput until brighter sources are found

### **Electron beam exposure systems**

- dominant mask making tool.
- potential < 0.1 **m** resolution (on flat, uniform substrates).
- usually step and repeat format, e beam computer driven
- typical resist:
  - poly (methyl methacrylate)
- low throughput
- problem in electron beam systems:
  - most electrons do not stop in the photoresist:
    - potential damage problem
    - back scattered electrons cause pattern edges to blur
  - most e- beam pattern generators contain computer code to reduce dose near edges to control proximity effects.

## **Etching terminology**



- bias B
  - $B \circ d_f d_m$  (i.e., twice the "undercut)
- anisotropy A

-  $A_{film} \circ 1 - v_l / v_v$ 

- v<sub>1</sub> lateral etch rate
- $v_v \bullet$  vertical etch rate
- for films etched just to completion
  - $A_f = 1 |B| / 2h_f$ 
    - $-h_f$  o film thickness
- $A_f = 0$  isotropic
- $A_f = 1$  perfectly anisotropic

32