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Electrostatic/magnetostatic forces

• simplest approach: energy method
– recall that energy = force (vector) • “travel” (vector)
– then ( )

( )distance

energy
F

∂
∂=

– note that this can give the TOTAL force (not pressure) if you 
can identify a single spatial coordinate that is parallel to the
force

– simple example: parallel plates
– electrostatic: applied voltage V
– magnetostatic: current I



Dean P. Neikirk  © 2001, last update March 19, 2001 2 Dept. of ECE, Univ. of Texas at Austin

Parallel plate capacitors

• here the fields are uniform, fringe fields are “small”
– force equation is found using

– or more simply

– force is attractive between plates

2or2
cap V

h

A

2

1
VC

2

1
U ⋅





 ⋅ε⋅ε=⋅= 2

2
orcap

x V
h

A

2

1

x

U
F ⋅





 ⋅ε⋅ε=

∂
∂

=

y

x

z

h

w

l

2
2
oror

platex V
h

A

2

1

h

V
V

h

A

2

1

h

V

2

VC
EQF ⋅





 ⋅ε⋅ε=⋅





 ⋅⋅ε⋅ε=⋅





 ⋅=⋅=

Fx
+Q

-Q
E = V/h



Dean P. Neikirk  © 2001, last update March 19, 2001 3 Dept. of ECE, Univ. of Texas at Austin

Lateral displacement

• consider case where one plate is displaced a distance y wrt 
other plate
– ignoring fringe fields
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• force is indep of 
displacement

• reverses sign at 
y = 0

• restoring 
force centers 
the plates
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Lateral displacement of dielectric slab

• consider case where dielectric slab (of thickness h) is 
displaced a distance y wrt the plates
– ignoring fringe fields
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• force is indep of 
displacement

• is zero at y = 0
• force pulls 

slab into 
region 
between the 
plates
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Lateral displacement of metallic slab

• consider case where BIASED metallic slab is displaced a 
distance y wrt the plates
– ignoring fringe fields

( )
m

mor
A hh

yw
CC

−
⋅−⋅ε⋅ε== l

y

x

z
h

w

l

Fywm hm

region A region B

( )0yV
hh2

1

y

U
F 2

m

orcap
y >⋅








−

⋅ε⋅ε−=
∂

∂
= l

• note there is NO net force in the x direction!
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Lateral displacement of metallic slab

• consider case where floating metallic slab is displaced a 
distance y wrt the plates
– ignoring fringe fields
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Lateral displacement of metallic slab

• consider case where metallic slab is displaced a distance y wrt 
the plates
– ignoring fringe fields
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Comparison of two bias schemes

• “unbiased” metal slab force < “biased” metal slab
• no force in x direction (in absence of fringe fields)
• force is zero once slab is fully “between” the plates
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Electrostatic – mechanical force 
balance

• assume one plate fixed, other connected to a spring
– force balance
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Electrostatic – mechanical force 
balance

• obvious problem
– max force from spring is k•d, but F electro ⇒ ∞ as y ⇒ d
– estimate bound on y:
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Electrostatic – mechanical force 
balance

• plot                   vs delta
• find normalized force, intersection 

gives y/d
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Electrostatic – mechanical force 
balance

• if applied voltage exceeds some maximum, the attractive force 
exceeds the restoring force from the spring

– max at
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Electrostatic displacement of 
cantilever

• capacitor formed by cantilever beam and fixed plate
• cantilever beam: supported at one end only

– point force F at position a, displacement y at position x

– tip deflection (x = L) due to δF at position x = a

( ) ( )
( )




>−⋅⋅
<−⋅⋅

⋅
⋅⋅

=
axax3a

axxa3x

IE6

F
xy

2

2

y

L
a

δF
x

d

3tw
12

1
I ⋅⋅=

( )aL3a
IE6

F
y 2

tip −⋅⋅⋅
⋅⋅

δ=δ



Dean P. Neikirk  © 2001, last update March 19, 2001 14 Dept. of ECE, Univ. of Texas at Austin

Electrostatic beam displacement

• want to integrate to get total tip 
deflection

• recall force per area for separation h is

• force δF due to electrostatic attraction at x

• but from beam equation the displacement y at the point of 
force application x

• so solve for dF as function of x
– requires solution of a cubic!
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Electrostatic beam displacement

• want to integrate to get total tip 
deflection

• try something simpler
– assume “parabolic” bending of beam 

• then force δF due to electrostatic attraction at x

• so the total deflection of the tip is 

• solve “implicitly” by assume a value for y tip inside the integral, 
then integrate, compare integral to assumed value

( ) dxw
yLxd

V

2
dF

2

tip
2

or ⋅⋅










⋅−
ε⋅ε=

( ) tip

2

y
L

x
xy ⋅





=

( )[ ]∫












⋅−

−⋅⋅
⋅⋅⋅
⋅⋅ε⋅ε=

L

0
222

tip

322
or

tip dx
xLyd

xxL3

IE62

Vw
y

( )∫ 





 −⋅⋅⋅

⋅⋅
=

L

0

2
tip xL3x

IE6

dF
y



Dean P. Neikirk  © 2001, last update March 19, 2001 16 Dept. of ECE, Univ. of Texas at Austin

Electrostatic beam displacement

• “parameterize” problem using y tip = Y inside integral

• using parabolic approx:

• integrals:
–
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Electrostatic beam displacement

• after integration replace Y with ytip

• using normalized displacement

• integral becomes

• or finally
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Electrostatic beam displacement

• solve implicitly by plotting 
vs delta 

• solution is obtained by plotting “normalized force”
– then find value of delta at intersection
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Thermopneumatic actuation

• use sealed volume
– temperature change accompanied by pressure and volume 

changes
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Thermopneumatic actuation

• resulting equation for displacement is quadratic

– solve for x, using the normalized “force” α

• to maximize displacement sensitivity to temperature make α big
– (cross sectional area / hi) big
– k small 

• leading term
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Thermal deflection of bimorph beam

• consider a cantilever beam made of two materials with un-
equal TCE’s
– assume no built-in stress, one end pinned cantilever

( )
( ) ( ) 21if21

2
21

ttTT6

tt
R

⋅⋅−⋅α−α⋅
+≈

Ti Tfα1

α2 α1 > α2 Tf > Tf

( ) ( ) ( )

( ) ( ) ( )21if21

111

3
222

222

3
111

21
2

21

ttTT6

twE
twE

twE
twE

tt2tt4
R

+⋅−⋅α−α⋅
⋅⋅

⋅⋅+
⋅⋅

⋅⋅+⋅−+⋅
≈

Kovacs (units are wrong) 

Tabib-Azar



Dean P. Neikirk  © 2001, last update March 19, 2001 22 Dept. of ECE, Univ. of Texas at Austin


