Electrostatic/magnetostatic forces

- simplest approach: energy method
- recall that energy = force (vector) • "travel" (vector)
- then

$$
\mathrm{F}=\frac{\partial(\text { energy })}{\partial(\text { distance })}
$$

- note that this can give the TOTAL force (not pressure) if you can identify a single spatial coordinate that is parallel to the force
- simple example: parallel plates
- electrostatic: applied voltage V
- magnetostatic: current I

Parallel plate capacitors

- here the fields are uniform, fringe fields are "small"
- force equation is found using
$\mathrm{U}_{\text {cap }}=\frac{1}{2} \mathrm{C} \cdot \mathrm{V}^{2}=\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{A}}{\mathrm{h}}\right) \cdot \mathrm{V}^{2} \quad\left|\mathrm{~F}_{\mathrm{x}}\right|=\frac{\partial \mathrm{U}_{\text {cap }}}{\partial \mathrm{x}}=\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{A}}{\mathrm{h}^{2}}\right) \cdot \mathrm{V}^{2}$
- or more simply

$$
\left|\mathrm{F}_{\mathrm{x}}\right|=\mathrm{Q}_{\text {plate }} \cdot|\mathrm{E}|=\left(\frac{\mathrm{C} \cdot \mathrm{~V}}{2}\right) \cdot \frac{\mathrm{V}}{\mathrm{~h}}=\left(\frac{1}{2} \frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{~A}}{\mathrm{~h}} \cdot \mathrm{~V}\right) \cdot \frac{\mathrm{V}}{\mathrm{~h}}=\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{~A}}{\mathrm{~h}^{2}}\right) \cdot \mathrm{V}^{2}
$$

- force is attractive between plates

Lateral displacement

- consider case where one plate is displaced a distance y wrt other plate
- ignoring fringe fields $\quad \mathrm{C}(\mathrm{y})=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot(\mathrm{w}-\mathrm{y}) \cdot l}{\mathrm{~h}}$

$$
\mathrm{U}_{\text {cap }}=\frac{1}{2} \mathrm{C} \cdot \mathrm{~V}^{2}=\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot(\mathrm{w}-\mathrm{y}) \cdot l}{\mathrm{~h}}\right) \cdot \mathrm{V}^{2} \quad \mathrm{~F}_{\mathrm{y}}=\frac{\partial \mathrm{U}_{\text {cap }}}{\partial \mathrm{y}}=\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l}{\mathrm{~h}}\right) \cdot \mathrm{V}^{2} \cdot \begin{cases}-1 & \mathrm{y}>0 \\ +1 & \mathrm{y}<0\end{cases}
$$

- force is indep of displacement
- reverses sign at $\mathrm{y}=0$
- restoring force centers the plates

Lateral displacement of dielectric slab

- consider case where dielectric slab (of thickness h) is displaced a distance y wrt the plates
- ignoring fringe fields $\mathrm{C}(\mathrm{y})=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot\left(\mathrm{w}_{\mathrm{d}}-\mathrm{y}\right) \cdot l}{\mathrm{~h}}+\frac{\varepsilon_{0} \cdot\left[\mathrm{w}-\left(\mathrm{w}_{\mathrm{d}}-\mathrm{y}\right)\right] \cdot l}{\mathrm{~h}}$

$$
\mathrm{F}_{\mathrm{y}}=\frac{\partial \mathrm{U}_{\mathrm{cap}}}{\partial \mathrm{y}}=\frac{1}{2}\left[-\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l}{\mathrm{~h}}\right)+\left(\frac{\varepsilon_{\mathrm{o}} \cdot l}{\mathrm{~h}}\right)\right] \cdot \mathrm{V}^{2}=-\frac{1}{2} \frac{\varepsilon_{\mathrm{o}} \cdot l}{\mathrm{~h}}\left[\varepsilon_{\mathrm{r}}-1\right] \cdot \mathrm{V}^{2} \quad(\mathrm{y}>0)
$$

- force is indep of displacement
- is zero at $\mathbf{y}=0$
- force pulls slab into region between the plates

Lateral displacement of metallic slab

- consider case where BIASED metallic slab is displaced a distance y wrt the plates
- ignoring fringe fields

$$
\mathrm{C}=\mathrm{C}_{\mathrm{A}}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot\left(\mathrm{w}_{\mathrm{m}}-\mathrm{y}\right) \cdot l}{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}
$$

- note there is NO net force in the x direction!

Lateral displacement of metallic slab

- consider case where floating metallic slab is displaced a distance y wrt the plates
- ignoring fringe fields

$$
\mathrm{C}_{\text {total }}=\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot\left(\mathrm{w}_{\mathrm{m}}-\mathrm{y}\right) \cdot l}{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}\right)+\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot\left[\mathrm{w}-\left(\mathrm{w}_{\mathrm{m}}-\mathrm{y}\right)\right] \cdot l}{\mathrm{~h}}\right)
$$

Lateral displacement of metallic slab

- consider case where metallic slab is displaced a distance y wrt the plates
- ignoring fringe fields

$$
\mathrm{C}_{\text {total }}=\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l \cdot\left(\frac{\left(\mathrm{w}_{\mathrm{m}}-\mathrm{y}\right)}{\mathrm{h}-\mathrm{h}_{\mathrm{m}}}+\frac{\left[\mathrm{w}-\left(\mathrm{w}_{\mathrm{m}}-\mathrm{y}\right)\right]}{\mathrm{h}}\right)
$$

$$
\frac{\partial \mathrm{C}_{\text {total }}}{\partial \mathrm{y}}=\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l \cdot\left[\frac{-1}{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}+\frac{1}{\mathrm{~h}}\right]=\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l \cdot\left[\frac{-\mathrm{h}_{\mathrm{m}}}{\mathrm{~h} \cdot\left(\mathrm{~h}-\mathrm{h}_{\mathrm{m}}\right)}\right]
$$

$$
\mathrm{F}_{\mathrm{y}}=\frac{\partial \mathrm{U}_{\text {cap }}}{\partial \mathrm{y}}=\frac{1}{2} \frac{\partial \mathrm{C}}{\partial \mathrm{y}} \cdot \mathrm{~V}^{2}=-\frac{1}{2} \varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l \cdot\left[\frac{\mathrm{~h}_{\mathrm{m}}}{\mathrm{~h} \cdot\left(\mathrm{~h}-\mathrm{h}_{\mathrm{m}}\right)}\right] \cdot \mathrm{V}^{2} \quad(\mathrm{y}>0)
$$

Comparison of two bias schemes

$$
\mathrm{F}_{\mathrm{y}}=-\frac{1}{2} \varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l \cdot\left[\frac{\mathrm{~h}_{\mathrm{m}} / \mathrm{h}}{\left(\mathrm{~h}-\mathrm{h}_{\mathrm{m}}\right)}\right] \cdot \mathrm{V}^{2}
$$

$$
\mathrm{F}_{\mathrm{y}}=-\frac{1}{2} \varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l \cdot\left[\frac{1}{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}\right] \cdot \mathrm{V}^{2}
$$

- "unbiased" metal slab force < "biased" metal slab
- no force in x direction (in absence of fringe fields)
- force is zero once slab is fully "between" the plates

Electrostatic - mechanical force balance

- assume one plate fixed, other connected to a spring
- force balance

$$
\begin{aligned}
& \underbrace{\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0} \cdot \mathrm{~A}}{(\mathrm{~d}-\mathrm{y})^{2}}\right) \cdot V^{2}}_{F_{\mathrm{F}}^{\mathrm{ap}} \mid}=\underbrace{\mathrm{k} \cdot \mathrm{y}}_{\left|\mathrm{F}_{\mathrm{x}}^{\text {spinig }}\right|} \\
& \mathrm{y}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{w} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{k}} \cdot \frac{\mathrm{~L}}{(\mathrm{~d}-\mathrm{y})^{2}}
\end{aligned}
$$

use normalized displacement $\Delta \equiv \frac{\mathrm{y}}{\mathrm{d}}$
$\Delta=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{W} \cdot \mathrm{V}^{2}}{2 \cdot \mathrm{k}} \cdot \frac{\mathrm{L}}{\mathrm{d}^{2}} \cdot \frac{1}{(1-\Delta)^{2}} \square \Delta \cdot(1-\Delta)^{2}=\underbrace{\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{w} \cdot \mathrm{V}^{2}}{2 \cdot \mathrm{k}} \cdot \frac{\mathrm{L}}{\mathrm{d}^{2}}}_{\text {normalized force }}$
cubic, solve implicitly

Electrostatic - mechanical force balance

- obvious problem
- max force from spring is $k \cdot d$, but $F_{\text {electro }} \Rightarrow \infty$ as $y \Rightarrow d$
- estimate bound on y :

$$
\begin{aligned}
& \left.\underbrace{\frac{1}{2}\left(\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0} \cdot \mathrm{~A}}{\left(\mathrm{~d}-\mathrm{y}_{\text {max }}\right)^{2}}\right) \cdot \mathrm{V}^{2}}_{\left|F_{x}^{\text {cap }}\right|}<\underbrace{\mathrm{k} \cdot \mathrm{~d} \text { dinis }}_{\mid \mathrm{F}_{\text {max }}} \right\rvert\, \\
& \left(\mathrm{d}-\mathrm{y}_{\max }\right)^{2}>\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{~W} \cdot \mathrm{~L} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{k} \cdot \mathrm{~d}} \\
& \frac{\mathrm{y}_{\text {max }}}{\mathrm{d}}<\left(1-\sqrt{\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0} \cdot \mathrm{~W} \cdot \mathrm{~L} \cdot \mathrm{~V}^{2}}{2 \cdot \mathrm{k} \cdot \mathrm{~d}^{3}}}\right)
\end{aligned}
$$

Electrostatic - mechanical force balance

- plot $\Delta \cdot(1-\Delta)^{2}$ vs delta
- find normalized force, intersection gives y / d

$$
\Delta \equiv \frac{\mathrm{y}}{\mathrm{~d}}
$$

f V is too large the plates collapse!

Electrostatic - mechanical force balance

- if applied voltage exceeds some maximum, the attractive force exceeds the restoring force from the spring
- max at
$\frac{\partial}{\partial \Delta} \Delta \cdot(1-\Delta)^{2}=0 \square(1-\Delta)^{2}-2 \cdot \Delta \cdot(1-\Delta)=0 \quad \square(1-\Delta) \cdot(1-3 \Delta)=0$

$$
\square \Delta_{\max }=\frac{1}{3}
$$

max displacement is $1 / 3$ of initial separation

$$
\mathrm{V}_{\text {max }}=\sqrt{\frac{2 \cdot \mathrm{k}}{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{w}} \cdot \frac{\mathrm{~d}^{2}}{\mathrm{~L}} \cdot \Delta_{\text {max }} \cdot\left(1-\Delta_{\text {max }}\right)^{2}}
$$

$$
\square \mathrm{V}_{\max }=\frac{2}{3} \sqrt{\frac{2}{3}} \sqrt{\frac{\mathrm{k}}{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{~W} \cdot \mathrm{~L}}} \cdot \mathrm{~d}
$$

Electrostatic displacement of cantilever

- capacitor formed by cantilever beam and fixed plate
- cantilever beam: supported at one end only
- point force F at position a, displacement y at position x

$$
y(x)=\frac{F}{6 \cdot E \cdot I} \cdot\left\{\begin{array}{l}
x^{2} \cdot(3 \cdot a-x) \\
a^{2} \cdot(3 \cdot x-a) \\
x>a
\end{array} \quad I=\frac{1}{12} \cdot w \cdot t^{3}\right.
$$

- tip deflection $(x=L)$ due to δF at position $x=\mathbf{a}$

$$
\delta y_{\text {tip }}=\frac{\delta \mathrm{F}}{6 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot \mathrm{a}^{2} \cdot(3 \cdot \mathrm{~L}-\mathrm{a})
$$

Electrostatic beam displacement

- want to integrate to get total tip deflection

$$
y_{\text {tip }}=\int_{0}^{\mathrm{L}}\left\{\frac{\mathrm{dF}}{6 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot \mathrm{x}^{2} \cdot(3 \cdot \mathrm{~L}-\mathrm{x})\right\}
$$

- recall force per area for separation h is $P=\frac{\varepsilon_{r} \cdot \varepsilon_{o}}{2}\left(\frac{V}{h}\right)^{2}$
- force $\delta \mathbf{F}$ due to electrostatic attraction at \mathbf{x}

$$
\mathrm{dF}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}}}{2}\left(\frac{\mathrm{~V}}{\mathrm{~d}-\mathrm{y}(\mathrm{x})}\right)^{2} \cdot \underbrace{\mathrm{w} \cdot \mathrm{dx}}_{\text {area }}
$$

- but from beam equation the displacement y at the point of force application x

$$
y(x)=\frac{d F}{3 \cdot E \cdot I} \cdot x^{3}
$$

- so solve for $d F$ as function of x
- requires solution of a cubic!

$$
\mathrm{dF}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}}}{2}\left(\frac{\mathrm{~V}}{\mathrm{~d}-\frac{\mathrm{dF}}{3 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot \mathrm{x}^{3}}\right)^{2} \cdot \mathrm{~W} \cdot \mathrm{dx}
$$

Electrostatic beam displacement

- want to integrate to get total tip deflection

$$
\mathrm{y}_{\text {tip }}=\int_{0}^{\mathrm{L}}\left\{\frac{\mathrm{dF}}{6 \cdot \mathrm{E} \cdot \mathrm{I}} \cdot \mathrm{x}^{2} \cdot(3 \cdot \mathrm{~L}-\mathrm{x})\right\}
$$

- try something simpler
- assume "parabolic" bending of beam $y(x)=\left(\frac{x}{L}\right)^{2} \cdot y_{\text {tip }}$
- then force $\delta \mathbf{F}$ due to electrostatic attraction at \mathbf{x}

$$
\mathrm{dF}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}}}{2}\left(\frac{\mathrm{~V}}{\mathrm{~d}-(\mathrm{x} / \mathrm{L})^{2} \cdot \mathrm{y}_{\text {tip }}}\right)^{2} \cdot \mathrm{w} \cdot \mathrm{dx}
$$

- so the total deflection of the tip is

$$
y_{\text {tip }}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{0} \cdot \mathrm{w} \cdot \mathrm{~V}^{2}}{2 \cdot 6 \cdot \mathrm{E} \cdot \mathrm{I}} \int_{0}^{\mathrm{L}}\left\{\frac{3 \cdot \mathrm{~L} \cdot \mathrm{x}^{2}-\mathrm{x}^{3}}{\left[\mathrm{~d}-\left(\mathrm{y}_{\text {tip }} / \mathrm{L}^{2}\right) \cdot \mathrm{x}^{2}\right]^{2}}\right\} \mathrm{dx}
$$

- solve "implicitly" by assume a value for $y_{\text {tip }}$ inside the integral, then integrate, compare integral to assumed value

Electrostatic beam displacement

- "parameterize" problem using $\mathbf{y}_{\text {tip }}=\mathbf{Y}$ inside integral
- using parabolic approx: $y_{\text {tip }}=\frac{\varepsilon_{r} \cdot \varepsilon_{0} \cdot w \cdot V^{2}}{2 \cdot 6 \cdot E \cdot I} \int_{0}^{L}\left\{\frac{3 \cdot L \cdot x^{2}-x^{3}}{\left[d-\left(Y / L^{2}\right) \cdot x^{2}\right]^{2}}\right\} d x$
- integrals:

$$
\begin{array}{ll}
& \int\left\{\frac{x^{2}}{\left[a^{2}-x^{2}\right]}\right\} d x=\frac{x}{2\left(a^{2}-x^{2}\right)}-\frac{1}{4 a} \cdot \ln \left|\frac{a+x}{a-x}\right| \\
& \int\left\{\frac{x^{3}}{\left[a^{2}-x^{2}\right]}\right\} d x=\frac{a^{2}}{2\left(a^{2}-x^{2}\right)}+\frac{1}{2} \cdot \ln \left|a^{2}-x^{2}\right|
\end{array}
$$

Electrostatic beam displacement

- after integration replace \mathbf{Y} with $\mathbf{y}_{\text {tip }}$
$y_{\text {tip }}=\frac{\varepsilon_{r} \cdot \varepsilon_{o} \cdot \mathrm{w} \cdot \mathrm{V}^{2} \cdot \mathrm{~L}^{4}}{2 \cdot 6 \cdot \mathrm{E} \cdot \mathrm{I} \cdot\left(\mathrm{y}_{\text {tip }}\right)^{2}}\left[\frac{3 \mathrm{~L}^{2}-\left(\mathrm{d} \cdot \mathrm{L}^{2} / \mathrm{y}_{\text {tip }}\right)}{2\left\{\left(\mathrm{~d} \cdot \mathrm{~L}^{2} / \mathrm{y}_{\text {tip }}\right)-\mathrm{L}^{2}\right\}^{2}}+\frac{1}{2}-\frac{3 \mathrm{~L}}{4 \sqrt{\mathrm{~d} \cdot \mathrm{~L}^{2} / \mathrm{y}_{\text {tip }}}} \cdot \ln \left|\frac{\sqrt{\mathrm{d} \cdot \mathrm{L}^{2} / \mathrm{y}_{\text {tip }}}+\mathrm{L}}{\sqrt{\mathrm{d} \cdot \mathrm{L}^{2} / \mathrm{y}_{\text {tip }}}-\mathrm{L}}\right|+\frac{1}{2} \cdot \ln \left|\frac{\mathrm{~d} \cdot \mathrm{~L}^{2} / \mathrm{y}_{\text {tip }}}{\mathrm{d} \cdot \mathrm{L}^{2} / \mathrm{y}_{\text {tip }}-\mathrm{L}^{2}}\right|\right]$
- using normalized displacement $\Delta=\frac{y_{\text {tip }}}{\mathrm{d}}$
- integral becomes

$$
\Delta^{3}=\frac{\varepsilon_{r} \cdot \varepsilon_{0} \cdot \mathrm{~W} \cdot \mathrm{~V}^{2} \cdot \mathrm{~L}^{4}}{12 \cdot \mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~d}^{3}}\left[\frac{\Delta}{1-\Delta}+\frac{1}{2} \cdot \ln \left|\frac{1}{1-\Delta}\right|-\frac{3}{4} \cdot \sqrt{\Delta} \cdot \ln \left|\frac{1+\sqrt{\Delta}}{1-\sqrt{\Delta}}\right|\right]
$$

- or finally $\Delta^{3} \cdot\left[\frac{\Delta}{1-\Delta}+\frac{1}{2} \cdot \ln \left|\frac{1}{1-\Delta}\right|-\frac{3}{4} \cdot \sqrt{\Delta} \cdot \ln \left|\frac{1+\sqrt{\Delta}}{1-\sqrt{\Delta}}\right|\right]^{-1}=\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot \mathrm{w} \cdot \mathrm{V}^{2} \cdot \mathrm{~L}^{4}}{12 \cdot \mathrm{E} \cdot \mathrm{I} \cdot \mathrm{d}^{3}}$

Electrostatic beam displacement

- solve implicitly by plotting $\Delta^{3} \cdot\left[\frac{\Delta}{1-\Delta}+\frac{1}{2} \cdot \ln \left|\frac{1}{1-\Delta}\right|-\frac{3}{4} \cdot \sqrt{\Delta} \cdot \ln \left|\frac{1+\sqrt{\Delta}}{1-\sqrt{\Delta}}\right|\right]$
- solution is obtained by plotting "normalized force"
- then find value of delta at intersection

Thermopneumatic actuation

- use sealed volume
- temperature change accompanied by pressure and volume changes

$$
\begin{aligned}
\mathrm{P}_{\mathrm{i}} \cdot \mathrm{~V}_{\mathrm{i}} & =\mathrm{N} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{i}} \\
\mathrm{~V}_{\mathrm{i}} & =\mathrm{A} \cdot \mathrm{~h}_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{P}_{\mathrm{f}} \cdot \mathrm{~V}_{\mathrm{f}}=\mathrm{N} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{f}} \\
\mathrm{~V}_{\mathrm{f}}=\mathrm{A} \cdot\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{x}\right)
\end{gathered}
$$

$$
\frac{P_{i} \cdot V_{i}}{T_{i}}=\frac{P_{f} \cdot V_{f}}{T_{f}} \Longleftrightarrow \frac{P_{i} \cdot A \cdot h_{i}}{T_{i}}=\frac{P_{f} \cdot A \cdot\left(h_{i}+x\right)}{T_{f}} \Longleftrightarrow \frac{h_{i}+x}{h_{i}}=\frac{P_{i}}{P_{f}} \cdot \frac{T_{f}}{T_{i}}
$$

$$
\text { but } \quad P_{f}=P_{i}+\frac{k \cdot x}{A} \quad \frac{h_{i}+x}{h_{i}}=\frac{P_{i}}{P_{i}+\frac{k}{A} \cdot x} \cdot \frac{T_{f}}{T_{i}}
$$

Thermopneumatic actuation

- resulting equation for displacement is quadratic

$$
\frac{h_{i}+x}{h_{i}}=\frac{P_{i}}{P_{i}+\frac{k}{A} \cdot x} \cdot \frac{T_{f}}{T_{i}} \quad x^{2} \cdot \frac{k}{A}+x \cdot\left(\frac{k \cdot h_{i}}{A}+P_{i}\right)+h_{i} \cdot P_{i} \cdot\left(1-\frac{T_{f}}{T_{i}}\right)=0
$$

- solve for \mathbf{x}, using the normalized "force" $\alpha \quad \alpha \equiv \frac{P_{i} \cdot A}{k \cdot h_{i}}$

$$
x=\frac{1}{2} \cdot h_{i} \cdot(1+\alpha) \cdot\left[-1+\sqrt{1+4 \cdot \frac{\alpha}{1+\alpha} \cdot\left(\frac{T_{f}}{T_{i}}-1\right)}\right]
$$

- to maximize displacement sensitivity to temperature make α big
- (cross sectional area / h_{i}) big
- k small
- leading term

$$
h_{i} \cdot(1+\alpha)=h_{i}+\frac{P_{i} \cdot A}{k}
$$

Thermal deflection of bimorph beam

- consider a cantilever beam made of two materials with unequal TCE's
- assume no built-in stress, one end pinned cantilever
T_{i}
α_{1}
α_{2}

$$
\begin{aligned}
& \mathrm{R} \approx \frac{\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}}{6 \cdot\left(\alpha_{1}-\alpha_{2}\right) \cdot\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \cdot \mathrm{t}_{1} \cdot \mathrm{t}_{2}} \quad \text { Kovacs (units are wrong) } \\
& \mathrm{R} \approx \frac{4 \cdot\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}-2 \mathrm{t}_{1} \cdot \mathrm{t}_{2}+\frac{\mathrm{E}_{1} \cdot \mathrm{w}_{1} \cdot\left(\mathrm{t}_{1}\right)^{3}}{\mathrm{E}_{2} \cdot \mathrm{w}_{2} \cdot \mathrm{t}_{2}}+\frac{\mathrm{E}_{2} \cdot \mathrm{w}_{2} \cdot\left(\mathrm{t}_{2}\right)^{3}}{\mathrm{E}_{1} \cdot \mathrm{w}_{1} \cdot \mathrm{t}_{1}}}{6 \cdot\left(\alpha_{1}-\alpha_{2}\right) \cdot\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \cdot\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)} \quad \text { Tabib-Azar }
\end{aligned}
$$

