Etching terminology

- bias B
 - $B = d_f d_m$ (i.e., twice the "undercut)
- anisotropy A

$$- \mathbf{A}_{\text{film}} \equiv \mathbf{1} - \mathbf{v}_{\text{I}} / \mathbf{v}_{\text{v}}$$

- $v_1 \equiv$ lateral etch rate
- $v_v \equiv vertical etch rate$
- for films etched just to completion
 - $A_f = 1 |B| / 2h_f$
 - $-h_f \equiv film thickness$
- $A_f = 0$ isotropic
- A_f = 1 perfectly anisotropic

Impact undercut and feature aspect ratio

- example: want film to have "equal" lines and spaces after etch
- can we compensate for bias (undercut) by adjusting the mask?

- but for films etched just to completion $|B| = 2 h_f (1 - A_f)$

SO
$$d_{mask} = d_f \left[1 - 2 \frac{h_f}{d_f} (1 - A_f) \right]$$

• h_f / d_f is the feature aspect ratio

• since
$$\mathbf{d}_{\mathbf{m}} > \mathbf{0}$$
 $\left[1 - 2\frac{h_f}{d_f}(1 - A_f)\right] > 0 \implies A_f \ge 1 - \frac{1}{2 \cdot (\mathbf{h}_f/\mathbf{d}_f)}$

if aspect ratio is << 1 anisotropy is not needed

- if aspect ratio is >> 1 need high anisotropy (i.e., $A_f \sim 1$)!

Example: undercut and feature aspect ratio

- example: want film to have "equal" lines and spaces after ISOTROPIC etch
 for isotropic etch, etched just to completion, undercut = film thickness
- compensate for bias (undercut) by adjusting the mask features

- here
$$\mathbf{d}_{\mathbf{f}} = \mathbf{d}_{\mathbf{m}} + 2\mathbf{h}_{\mathbf{f}} \Rightarrow \mathbf{d}_{\mathbf{m}} = \mathbf{d}_{\mathbf{f}} - 2\mathbf{h}_{\mathbf{f}} \text{ or } \mathbf{d}_{\mathrm{mask}} = \mathbf{d}_{\mathbf{f}} \cdot \left[1 - 2\frac{\mathbf{h}_{\mathbf{f}}}{\mathbf{d}_{\mathbf{f}}}\right]$$

- h_f / d_f is the feature aspect ratio
 - $h_f / d_f = 0.1 \rightarrow d_{mask} = 0.8 * d_{film}$
 - $h_f / d_f = 0.5 \rightarrow d_{mask} = 0$!!!!!!
 - if aspect ratio is ≥ 0.5 you canNOT make equal lines / spaces using an isotropic etch!!!!

Selectivity of etches

- need etch that removes film much faster than either the etch mask or "substrate"
- required selectivities depend on
 - uniformity of film thickness
 - uniformity of etch rates
 - anisotropy of etch rates
 - overetch required
 - acceptable loss of linewidth
 - acceptable "substrate" loss

Selectivity and Over-etch time

- how long must you etch?
 - etch time = film thickness / film etch rate
- BUT
 - what if film thickness is not uniform?
 - etch time = largest film thickness / film etch rate
 - example: conformal film over a step, perfectly anisotropic etch

- must continue etch for time = h_{step} / v_{film} to clear "residue"
 - total etch time is then

$$T = h_f / v_f + h_{step} / v_f = h_f / v_f \bullet (1 + \Delta)$$

- $-\Delta$ is the fractional over-etch time,
 - here $\Delta = h_{step} / h_{film}$

Film -to- substrate selectivity

- does over-etch matter?
 - what about "substrate" exposed during over-etch period?

over-etch etch time

substrate is "lost" during overetch

$$- h_{sub} = t_{over} \bullet v_{sub} = (h_{step} / v_{f}) \bullet v_{sub}$$
$$= h_{step} \bullet (v_{sub} / v_{f})$$

- but $v_{f}^{}$ / $v_{sub}^{}$ is the film-to-substrate selectivity $S_{fs}^{},$ so

$$\cdot \mathbf{S}_{fs} = \mathbf{h}_{step} / \mathbf{h}_{sub}$$

• recalling $\Delta = h_{step} / h_{film}$ we get

•
$$S_{fs} = (h_{film} / h_{sub}) \bullet \Delta$$

Effects of non-uniformities

- what if things aren't all uniform:
 - etch rate: $v_f \bullet (1 \pm \phi_f)$
 - thickness: $h_f \cdot (1 \pm \delta_f)$

- thickness:
$$h_f \bullet (1 \pm \delta_f)$$

- so now etch time is $t = \frac{h_f \cdot (1 \pm \delta_f)}{v_f \cdot (1 \pm \phi_f)} \cdot (1 + \Delta)$

r

- to ensure complete etch you must use the longest time: $t = \frac{h_f \cdot (1+\delta_f)}{v_f \cdot (1-\phi_f)} \cdot (1+\Delta)$

- how long is the "substrate" exposed? •
 - shortest time substrate could be coverd by film: consider thinnest film removed at fastest film etch rate! $t_{covered} = \frac{h_f \cdot (1 - \delta_f)}{v_f \cdot (1 + \phi_f)}$

so the amount of substra

$$\underbrace{v_f \cdot (1-\phi_f)}_{total \ etch \ time} \underbrace{v_f \cdot (1+\phi_f)}_{time \ sub. \ covered}$$

$$\underbrace{(1+\delta_f) \cdot (1+\Delta) \quad (1-\delta_f)}_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \cdot (1+\Delta) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \cdot (1+\Delta) \cdot (1+\Delta) \cdot (1+\Delta) \right]_{total \ etch \ time} \int \left[(1+\delta_f) \cdot (1+\Delta) \cdot ($$

 $t \qquad = \frac{h_f \cdot (1 + \delta_f)}{(1 + \lambda_f)} \cdot (1 + \lambda) - \frac{h_f \cdot (1 - \delta_f)}{(1 - \lambda_f)}$

$$h_{s} = v_{s} \cdot t_{exposed} = v_{s} \cdot \frac{h_{f}}{v_{f}} \cdot \left[\frac{(1+\delta_{f}) \cdot (1+\Delta)}{(1-\phi_{f})} - \frac{(1-\delta_{f})}{(1+\phi_{f})}\right] = \left(\frac{v_{s}}{v_{f}}\right) \cdot h_{f} \cdot \left[\frac{(1+\delta_{f}) \cdot (1+\Delta)}{(1-\phi_{f})} - \frac{(1-\delta_{f})}{(1+\phi_{f})}\right] = \left(\frac{s_{s}}{s_{f}}\right)^{-1}$$

Example results for film - substrate selectivity

Dept. of ECE, Univ. of Texas at Austin

Film -to- mask selectivity

Film -to- mask selectivity

- need to consider "loss of linewidth" due to mask erosion
 - function of:
 - anisotropy of etch (both mask and film!)
 - also a function of the mask edge profile

- should also include impact of various non-uniformites
 - film thickness: $h_f \cdot (1 \pm \delta_f)$
 - etch rates:
 - mask: $v_m \bullet (1 \pm \phi_m)$
 - film: v_f•(1 ± φ_f)

Film -to- mask selectivity

• so total mask edge movement is $\frac{W}{2} = \left(v_{horz, mask} + v_{vert, mask} \cdot \cot \theta\right) \cdot t_{etch}$

$$- \mathbf{or} \qquad W = 2 \cdot v_{vert,mask} \left(\frac{\frac{v_{horz,mask}}{v_{vert,mask}}}{1 - A_{mask}} + \cot \theta \right) \cdot \frac{h_f \cdot (1 + \delta_f)}{v_f \cdot (1 - \phi_f)} \cdot (1 + \Delta)$$

let's use worst case mask etch so

$$W = 2 \cdot \frac{v_{mask} \cdot (1 + \phi_m)}{v_f} \cdot ([1 - A_{mask}] + \cot \theta) \cdot \frac{h_f \cdot (1 + \delta_f)}{(1 - \phi_f)} \cdot (1 + \Delta)$$

or
$$S_{fm} = 2 \cdot \frac{h_f}{W} \cdot \frac{(1 + \phi_m) \cdot (1 + \delta_f) (1 + \Delta)}{(1 - \phi_f)} \cdot ([1 - A_{mask}] + \cot \theta_{mask}]$$

– NOTE THIS ASSUMED PERFECTLY ANISOTROPIC ETCH OF FILM!!!

Dean P. Neikirk © 2001, last update February 12, 2001

12

Sample results for film - mask selectivity

- etch rate uniformity $\phi_f \& \phi_m = 0.1$
- film thickness uniformity $\delta_f = 0.05$

13

Lift-off patterning

- "no-etch" thin film patterning process
 - do the lithography BEFORE film deposition
- extensively developed by IBM in the late 70's for patterning of metals

- Au and Pb for Josephson junction computers!

[1] C. Li and J. Richards, "A High Resolution Double Layer Photoresist Structure for Lift-Off Techno*logy*," presented at IEDM, Washington, DC, 1980.

[2] M. Hatzakis, B. J. Canavello, and J. M. Shaw, "Single-Step Optical Lift-Off Process," *IBM Journal of Research and Development*, vol. 24, pp. 452-460, 1980.

[3] R. M. Halverson, M. W. MacIntyre, and W. T. Motsiff, "The Mechanism of Single-Step Liftoff with Chlorobenzene in a Diazo-Type Resist," *IBM Journal of Research and Development*, vol. 26, pp. 590-595, 1982.

[4] G. G. Collins and C. W. Halsted, "Process Control of the Chlorobenzene Single-Step Liftoff Process with a Diazo-Type Resist," *IBM Journal of Research and Development*, vol. 26, pp. 596-604, 1982.

[5] P. L. Pai and W. G. Oldham, "A Liftoff Process Using Edge Detection (LOPED)," *IEEE Transactions on Semiconductor Manufacturing*, vol. 1, pp. 3-9, 1988.

[6] Y. Homma, A. Yajima, and S. Harada, "Feature Size Limit of Liftoff Metallization Technology," *IEEE Transactions on Electron Devices*, vol. ED-29, pp. 512-517, 1982.

[7] S. Lyman, J. Jackel, and P. Liu, "Lift-off of thick metal layers using multilayer resist," *Journal of Vacuum Science Technology B*, vol. 19, pp. 1325-1328, 1981.

[8] K. Grebe, I. Ames, and A. Ginzberg, "Masking of Deposited Thin Films by Means of an Aluminum-Photoresist Composite," *Journal of Vacuum Science Technology B*, vol. 11, pp. 458, 1974.

Basic lift-off concept

- use resist with a "re-entrant" cross-sectional profile
- use deposition process with "poor" step coverage

- now use solvent to dissolve resist, lifting off the material to be removed
- problem: resist edge profile frequently is not "re-entrant"

Chlorobenzene process

- objective: produce a "lip" on the surface of the photoresist
 - chlorobenzene soak process
 - soaking photoresist in solvent alters exposure or/and development characteristics
- process:
 - apply resist, expose
 - soak in chlorobenzene
 - develop

Bilayer lift-off

- use two separate layers
 - bottom layer:
 "sacrificial"
 - undercut top layer to form "lip"

Wet chemical etching

- dominant etch process through late 1970's
- tends to be isotropic
 - A ~ 0
 - exception: anisotropic crystal etches
 - for silicon etch rates along various crystal directions can vary widely
 - (111) tends to be slowest
- tends to produce high selectivities

Oxide wet etch

- basic oxide etch: hydrofluoric acid (HF)
 - SiO₂ + 6HF → H_2SiF_6 + 2 H_2O
 - BHF: buffering agent (NH₄F) frequently added to keep [HF₂-] constant
 - etch rate
 - thermally grown oxide: ~ few tenth's micron per minute
 - PECVD deposited oxide: few times faster than thermal
 - doped oxides (BSG, PSG): ~2-5X faster than thermal
 - selectivities
 - very high to photoresist
 - undercutting or resist adhesion failure biggest problem for long etches
 - very high to silicon

Silicon nitride wet etch

- HF, BHF etch
 - typically much slower than oxide etch rates
 - slowest for "high quality", oxygen free nitride
 - rate in concentrated HF ranges from 0.01 0.1 micron / minute
 - about 10x slower in BHF
 - obviously no selectivity to oxide
- boiling H₃PO₄ (phosphoric acid)
 - nitride etch rate ~ 0.01 micron / minute
 - oxide etch rate ~ 0.001 micron / minute
 - silicon etch rate ~ 0.0003 micron / minute

Isotropic silicon wet etch: "HNA"

- mixture of HF (hydrofluoric acid), HNO₃ (nitric acid), and CH₃C00H (acetic acid)
- basic mechanism
 - injection of holes into Si to form Si_2^+ ("anodic" reaction)
 - attachment of OH^{-} to the Si²⁺ to form Si(OH)₂²⁺ (oxidation step)
 - reaction of the "hydrated silica" to form soluble product
 - fluoride ions from HF form H₂SiF₆
 - dissolution of products into solution
- overall reaction for HNA:
 - $18HF + 4HNO_3 + 3Si \rightarrow 2H_2SiF_6 + 4NO^{(gas)} + 8H_2O$
 - recall mechanism required holes:
 - $HNO_2 + HNO_3 + H_2O \rightarrow 2HNO_2 + 2OH^- + 2h^+$
 - note this is an electrochemical reaction
 - is influenced by dopant type and concentration, as well as any external applied electrical bias

HNA formulations

- HF : HNO₃ : water/CH₃COOH
 - **1:3:8**
 - etch rate: 0.7 3 microns/minute
 - doping dependence: light doping < 10¹⁷ REDUCES rate ~ 150X
 - SiO₂ etch rate: 0.03 microns/minute
 - **1:2:1**
 - etch rate: 4 microns/minute
 - doping dependence: none
 - SiO₂ etch rate: ?
 - 1:8.3:3.3
 - etch rate: 7 microns/minute
 - doping dependence: none
 - SiO₂ etch rate: 0.07 microns/minute

Crystallographic etching

23

Dean P. Neikirk © 2001, last update February 12, 2001

Dept. of ECE, Univ. of Texas at Austin

(111) planes

- (111) planes etch the slowest, tend to be cleavage planes
- 54.74° (111) wrt (100)

• edge of "pit" lines up with (110)

Masking

- assume bulk crystalline (100) silicon substrate combined with anisotropic etch
 - results in pyramidal shape
- bounding (111) planes can be reached using a variety of mask shapes
 - <u>square</u> mask opening, (100)
 wafer orientation, side of square
 is aligned to the (110) flat
 - what happens if you use a <u>circular</u> mask opening?
 - undercutting of the mask occurs until the (111) planes are reached
 - still forms a pyramidal pit!

Other mask openings

- in general mask is undercut until (111) planes are reached
 - <u>bars undercut</u> until bounding planes are reached

 <u>"cross"-shaped mask</u> opening will also undercut to form pyramidal pit

Other shapes?

- have to have a texana shape
 - <u>"Texas" star</u>
 - Longhorn

- "obtuse corner" cross
 - different bending stress / properties

27

Other orientations

• note (110) planes are perpendicular to one another

- anisotropic etch rates fastest to slowest
 - **(110)** : **(100)** : **(111)**
 - can etch "rectangular trenches" in (110) orientated substrates
 - sides of trenches are (110)

Anisotropic wet etch formulations

- alkali metal hydroxide etchants
 - examples: KOH, NaOH
 - typically 15 40w% concentration, dilutant water or isopropanol, ~70°C
 - proposed reactions:
 - Si + 2OH⁻ → Si(OH)₂²⁺ + 4e⁻
 - 4H₂O + 4e⁻ → 4OH⁻ + 2H₂ (gas)
 - Si(OH)₂²⁺ + 4OH⁻ → SiO₂(OH)₂²⁻ + 2H₂O
 - overall: Si + 2OH⁻ + 2H₂O \rightarrow SiO₂(OH)₂²⁻ + 2H₂ (gas)
 - selectivities:
 - (100) : (111) about 400 : 1, (111) rate ~ 1 μ m/min
 - p type doping > ~2x10¹⁹: reduces etch rate
 - (oxide) : (111) about 1 : 1000
 - choice of concentration, etch temperature
 - affects etch rate, surface smoothness
 - generally, KOH tends to give very smooth (111) planes

Other formulations

- similar: ammonium hydroxide NH₄OH
 - 3.7wt% @ 75°C, (100) : (111) of 8,000 : 1 , but < 0.1 $\mu\text{m/min}$ etch rate
 - hillock formation also a problem
- TMAH (tetramethyl ammonium hydroxide (CH₃)₄NOH)
 - 90°C, 10-40%, ~1 $\mu\text{m/min};$ surface roughness can be problem
 - (100) : (111) selectivity 10-35 : 1
 - boron doping stop
 - selectivity against oxide >1000
 - low aluminum etch rate
- EDP (ethylene diamine / pyrochatechol / water)
 - 115°C, ~1 μ m/min, (100) : (111) selectivity 35 : 1
 - oxide selectivity >1000:1, etches aluminum
- hydrazine

Various issues

- safety hazards
 - EDP, hydrazine potentially quite hazardous
 - ammonia released from TMAH at elevated temperatures
- hydrogen bubbles
 - all the reactions tend to produce H₂
 - bubble formation can locally "mask" etch leading to rough surfaces
 - bubbles trapped inside sacrificial regions can stop etch or cause breakage

Plasma assistant pattern transfer

includes

- ion milling, sputtering
- plasma etching
- reactive ion etching (RIE)
- all use plasmas
 - typical pressures 10⁻³ 10 Torr
 - mean free paths 10 mm 5 μm
 - number density 10¹³ 10¹⁷ cm⁻³
 - typical ion densities $\sim 10^9 10^{12} \text{ cm}^{-3}$
 - most gas molecules are NOT ionized
 - temperature
 - electron: ~10⁴ K
 - gas: ~ambient

RF discharges and potentials

- electron and ion mobilities are very different
 - leads to separation of charge in rf discharge
 - · electrons can "follow" field reversals, ions cannot
- plasma can act like a diode
 - dc potentials can be developed even for pure ac drive

- typical parameters
 - ac frequency: 13.56 MHz, other industrially assigned
 - dc voltages depend on ratio of powered -to- grounded electrode areas
 - tens (~equal areas) to hundreds of volts possible (small powered area wrt grounded)

Ion bombardment in plasma discharge

- dc bias voltage / field between plasma and electrode accelerates ions towards surface
 - positive ions strike V_p + |V_t| surface anisotropically
 - recall most gas molecules are neutral
 - still strike surface isotropically

sample on powered electrode

34

Sputtering and ion milling

- if ion energy is ~500 eV substantial sputtering of "target" occurs
 - inert gas (Ar) typically used
- sputtering systems
 - accelerating potential from "self bias"
 - powered electrode area << ground area
 - sample placed on powered electrode
- ion mill
 - separate ion generation, acceleration, and sample chamber
- process is purely physical
 - "everything" sputters
 - very low selectivity

Plasma etching

- use reactive species produced in a plasma discharge to drive chemistry
 - need to produce volatile reaction products
- usually try to avoid ion bombardment
 - keep accelerating voltages small
 - process is mainly chemical
 - high selectivity
 - low anisotropy

Dean P. Neikirk © 2001, last update February 12, 2001

Reactive Ion Etching (RIE)

- similar to sputter etcher but replace noble gas with reactive gases like to those used in plasma etching
 - want high energy ions at surface
 - high accelerating voltages
 - substrates on powered electrode
 - asymmetric electrodes
 - area of powered electrode < grounded electrode
 - low pressures 10⁻³ 10⁻¹ Torr
- in both plasma etching and RIE feed- gas composition produces the reactive species necessary for etching
 - chemistry tends to be isotropic
 - ion bombardment of surfaces generates the anisotropy in plasma assisted pattern transfer

Ion- induced and ion- enhanced gas phase etching

- ion-induced reactions
 - expose Si to Cl₂: no etching of the Si occurs
 - expose Si to Ar⁺ ion mill beam: etch rate < 0.5 nm/min
 - expose to both: etch rate ~ 10 nm/min
 - note NO Cl₂ plasma was present in this example
- ion-enhanced reactions
 - XeF₂ will spontaneously etch Si: ~0.5 nm/min
 - but if expose to both XeF₂ and Ar⁺ ion beam etch rate increases dramatically (~6 nm/min)

CF₄ plasma etching

- electron impact in plasma produces reactive radicals
 - $CF_4 + e \leftrightarrows CF_3^+ + F^* + 2e$
 - competing reactions between free F and CF₃ tends to keep F concentration low
 - free fluorine etches both Si and SiO₂, but etches Si faster
 - Si + 4F \rightarrow SiF₄ (g)
 - SiO₂ + 4F → SiF₄ (g) + O₂
 - these are isotropic!
- add O_2 to gas mix
 - $CF_3^+ + O + e \rightarrow COF_2 + F^*$
 - competes with F for CF₃, drives [F] up
 - etch rates increase
 - peak selectivity ~15 (Si:SiO₂)

Ion assisted CF_x etching

- add H_2 to CF_4 gas mix
 - $CF_4 + e \leftrightarrows CF_3^+ + F^* + 2e$
 - H₂ + F^{*} \rightarrow HF
 - so addition of H₂ drives [F] down
 - reduces Si etch rate
- BUT CF₃ will NOT etch SiO₂ UNLESS there is ion bombardment
 - $CF_x + SiO_2 +$ "damage" \rightarrow SiF_4 (g) + (CO, CO₂, COF₂, etc.)
 - $CF_x + Si \rightarrow SiF_4$ (g) + C-F (polymer) \rightarrow stops etch if no ion bombardment!
- from: Sze, 1st ed., p. 326. etch rate (Å/min) 600 summary: - CF₄ + H₂ (40%) : SiO₂ / Si SiQ₂ with ion bomb. 500 selectivity ~ 10:1 400 can improve oxide-to-silicon 300 pmma selectivity by decreasing F:C ratio: use CHF₃ 200 - CF₄ + O₂ (10%) : Si / SiO₂ pr 100 Si selectivity ~ 15:1 10 20 30 40 percent H_2 in CF_4

Mechanisms for ion-enhancement and induced anisotropy

- example of polymer formation:
 - Si etched in Cl₂ plasma (~isotropic)
 - $e + Cl_2 \rightarrow e + 2Cl$
 - Si + xCl \rightarrow SiCl_x \uparrow
 - "recombinant" species C₂ F₆
 - $\bullet \ \ {\rm e} + {\rm C_2F_6} \ \rightarrow \ {\rm 2CF_3} + {\rm e}$
 - $[CF_3 + CI]_x \rightarrow [CF_3CI]_3$ (polymer)
 - at ~85% C₂F₆ no undercutting occurs

ion bombardment

surface inhibitor mechanism anisotropy

Aluminum plasma etch

- use volatile aluminum chloride
 - AI + CCI₃⁺ + (bmbrdmnt) → AICI₃ (g) + C
 - AI + 3CI^{*} → AICI₃ (g)
 - problems
 - initial Al₂O₃ on surface harder to etch (mostly by CCl₃⁺)
 - selectivity wrt SiO₂ < ~20
 - selectivity wrt photoresist < ~15
 - can also use BCI_3 , may include some O_2

Etch summary

material etched	etch gas(es)	volatile product	selectivities
Si	$CF_4 + O_2$, etc.	SiF ₄	15:1 (Si:SiO ₂)
SiO ₂	$CF_4 + H_2$, etc.	SiF ₄	20:1 (SiO ₂ :Si)
organics	O ₂	CO ₂ , H ₂ O	high
AI	CCl₄, BCl₃, etc.	AICI ₃	15:1 (AI:SiO₂); few:1 (AI:Si)
Мо	CF ₄	MoF ₆	
W	CF₄	WF ₆	

- things that are hard to dry etch
 - copper: no volatile reaction products
 - use CMP instead

Si Deep RIE

- desire: high etch rates, high aspect ratios
 - requires very high degrees of anisotropy
- Bosch process (German patent: Larmer and Schilp, 1994)
 - uses recombinant species and side-wall polymer formation
 - sequential etch / polymer deposition
 - high bias reactive ion etch: SF₆ / Ar typical
 - low bias polymerization: C₄F₈, CHF₃
 - repeat
- usually need high density plasma source
 - inductively coupled
- aspects ratios up to about 30:1
- etch rate: few microns per minute
- selectivities
 - to PR : 50-100
 - to oxide 100-200

44

Deep RIE

- pictures at <u>http://www.ee.washington.edu/class/539/Lectures/lecture3/s</u> <u>Id011.htm</u>
- STS (<u>http://www.stsystems.com/</u>)
- BPS/Plasma Therm (model 790, ICP type)

Chemical-mechanical polish (CMP)

- in multi- level interconnect planarization is limiting problem
- CMP
 - lithography/etch to pattern metals
 - deposit dielectric
 - polish to planarize dielectric surface
 - deposit dielectric
 - etch contact openings (vias),
 deposit via "plug" material,
 etch/polish as needed
 - repeat starting with deposition/patterning of next metal lines

Damascene/CMP example

•ref: R. W. Mann, L. A. Clevenger, P. D. Agnello, and F. R. White, "Salicides and local interconnections for highperformance VLSI applications," IBM J. Res. Develop., vol. 39, pp. 403-417, 1995. Photo p. 414.

- dielectric layers have been etched away to reveal metal lines
- SRAM cell
 - green: word lines, salicided poly
 - yellow: 1st global, Ti/Al(Cu)/Ti/TiN
 - pink: local (intra-cell), tungsten
 - grey: contact studs, tungsten

Copper Interconnects: CMP example

- multi-level copper interconnects
 - reduce electrical resistance, improve electromigration resistance

C. Wu, "Computer Chips Take a Leap Forward," in Science News, vol. 152, 1997, pp. 196.

- problems
 - dry etch of copper is challenging
 - corrosion
 - cover sidewalls with TiN, other refractory, before copper deposition

L. Geppert, "Technology 1998, Analysis and Forcast: Solid State," in IEEE Spectrum, vol. 35, 1998, pp. 23-28.

Problems in CMP

- "dishing"
 - when making large area features the removal rate may not be uniform across the feature
 - copper: tends to get thinner near middle of large features
 - dielectrics: similar behavior
 - constrains ability to make "large" (i.e., width, length >> thinckness) structures