Piezoelectric effect

- depends on polarization, P, in a material
 - symmetry of crystal is critical
 - for crystal with center of symmetry, application of external stress does NOT produce a net polarization

Piezoelectric effect

- depends on polarization, P, in a material
 - symmetry of crystal is critical
 - for crystal <u>without</u> simple center of symmetry application of external stress DOES produce a net polarization

Piezoelectric effect

- reciprocity between applied voltage resulting in displacement and applied force/displacement producing voltage
 - constants relating voltage to displacement have units of charge/force

$$\delta L = d_{xz} \cdot V \cdot \frac{L}{t} \qquad \delta W = d_{xz} \cdot V \cdot \frac{W}{t} \qquad \delta t = d_{xx} \cdot V \qquad \text{along any axis, voltage across thickness is}$$

$$V = d_{xz} \cdot \frac{F_z}{\epsilon \cdot L}$$

$$V = d_{xz} \cdot \frac{F_y}{\epsilon \cdot W}$$

$$V = d_{xx} \cdot F_x \cdot \frac{t}{\epsilon \cdot L \cdot W}$$

for force applied

Piezoelectric materials

unit check: d*V = (coul/newt)*volt = (C/N)*(Ncm/C) = cm

material	piezoelectric constants (10 ⁻¹² C/N)	relative permittivity	d/ ε _r	Young's modulus (GPa)
quartz (thin films difficult)	d _{xx} = 2.31	4.5	0.5	107
polyvinyledene- fluoride (PVDF)	d _{xz} = 23 d _{xx} = - 33	12	1.9 -2.75	3
LiNbO ₃ (thin films difficult)	d _{xz} = - 4 d _{xx} = 23	28	-0.14 0.82	245
BaTiO ₃ (thin films difficult)	d _{xz} = 78 d _{xx} = 190	1700	0.04 0.1	
lead zirconate titanate (PZT)	d _{xz} = - 171 d _{xx} = 370	1700	-0.1 0.2	53
ZnO	$d_{xz} = 5.2$ $d_{xx} = 246$	1400	0.003 0.17	123

Piezoresistive effects

- again fundamental origin is distortion of crystal structure
 - for conducting material can be viewed as distortion of bands
 - leads to change in effective mass
 - leads to change in resistivity / conductivity
 - is dependent on direction of stress σ relative to resistor axis and crystal directions

$$\frac{\delta\rho}{\rho} = \pi_{||} \cdot \sigma_{||} + \pi_{\perp} \cdot \sigma_{\perp}$$

- for silicon
 - depends on doping type and concentration, as well as orientation of wafer and layout of resistor
 - drops rapidly for doping > 10^{18} cm⁻³

Piezoresitive coefficients for (100) Si, n, p < 10^{18}

doping type	π (10 ⁻¹³ m²/N)	π _{perp} (10 ⁻¹³ m²/N)	orientation of resistor
p-type	0	0	<100>
p-type	72	-65	<110>
n-type	-102	53	<100>
n-type	-32	0	in <110>

- also depends on temperature
 - ~ 0.25% per °C

Strain gauge

- frequently "gauge factor" used instead of piezo-resistive coefficients $GF = \frac{\delta R/R}{}$
- consider simple bar

$$R = \frac{\rho \cdot L}{A} \quad \Longrightarrow \quad dR = \frac{\rho}{A} \cdot dL + \frac{L}{A} \cdot d\rho - \frac{\rho \cdot L}{A^2} \cdot dA$$

$$\left(dR = \frac{\rho}{A} \cdot dL + \frac{L}{A} \cdot d\rho - \frac{\rho \cdot L}{A^2} \cdot dA \right) \cdot \frac{1}{R} \implies \frac{dR}{R} = \frac{dL}{L} + \frac{d\rho}{\rho} - \frac{dA}{A}$$

assume cylindrical geometry

$$A = \frac{\pi D^2}{4} \implies \frac{dA}{A} = \frac{2dD}{D}$$

recall Poisson's ratio

$$\nu = -\frac{\delta D/D}{\delta L/L} \qquad \Longrightarrow \qquad \frac{dA}{A} = -2 \cdot \nu \cdot \frac{dL}{L}$$

Strain gauge

• so have

$$\frac{\mathrm{dR}}{\mathrm{R}} = \frac{\mathrm{dL}}{\mathrm{L}} + \frac{\mathrm{d\rho}}{\rho} - \frac{\mathrm{dA}}{\mathrm{A}} \qquad \frac{\mathrm{dA}}{\mathrm{A}} = -2 \cdot \nu \cdot \frac{\mathrm{dL}}{\mathrm{L}} \qquad \Longrightarrow \qquad \frac{\mathrm{dR}}{\mathrm{R}} = (1 + 2 \cdot \nu) \frac{\mathrm{dL}}{\mathrm{L}} + \frac{\mathrm{d\rho}}{\rho}$$

so the gauge factor is now

$$GF = \frac{\delta R/R}{\underbrace{\delta L/L}_{\text{strain}}} = \frac{\delta R/R}{\epsilon} = (1 + 2 \cdot \nu) + \frac{\delta \rho/\rho}{\epsilon}$$

- in terms of the piezoelectric coefficient: $\frac{\delta \rho}{\rho} = \pi_{||} \cdot \sigma_{||}$
- and recall relation between stress and strain: $E \cdot \mathfrak{g} = \mathfrak{g}$

• so finally
$$GF = (1 + 2 \cdot v) + \frac{\pi_{||} \cdot \sigma}{\epsilon} = (1 + 2 \cdot v) + \pi_{||} \cdot E$$

Thermo-electric effects

- Seebeck effect
 - temperature gradient across a conductor gives rise to an electric field
 - tends to oppose charge flow that results from the temperature gradient
 - usually measured in reference to another material, forming a bi-metallic junction
 - usually referenced to platinum
 - most metals: ~5 μV/°C
 - silicon: depends on doping, ~ 500 μ V/°C for light doping
- Peltier effect
 - current flow across a junction between dissimilar materials results in a heat flux across the junction
 - thermo-electric coolers

Electrostatic/magnetostatic forces

- simplest approach: energy method
 - recall that energy = force (vector) "travel" (vector)
 - then

$$F = \frac{\partial(\text{energy})}{\partial(\text{distance})}$$

- note that this can give the TOTAL force (not pressure) if you can identify a single spatial coordinate that is parallel to the force
- simple example: parallel plates
 - electrostatic: applied voltage V
 - magnetostatic: current I