# "Classical" IC fabrication overview: How to make a MOSFET

- What do you need?
  - a good semiconductor (SILICON)
  - a p-n junction (boron-doped Si phosphorus-doped Si)
  - a good insulator (SILICON DIOXIDE)
  - a good conductor (poly-silicon and aluminum, copper)



Dean P. Neikirk © 2001, last update January 29, 2001

#### Silicon Device Processing

- The construction of a silicon integrated circuit uses three basic processes:
  - Oxidation:
    - by heating silicon to about 1000°C in oxygen the surface of the silicon becomes silicon dioxide (glass), a very good insulator.
  - Photolithography:
    - is a way of producing a pattern of bare areas and covered areas on a substrate. This serves as a mask for etching of the silicon dioxide.
  - Doping:
    - processes used to introduce controlled amounts of impurities into the bare areas on the silicon (as little as one impurity atom per million silicon atoms). This allows the formation of p-n diodes in the substrate.
- When all these steps are combined, along with metal wires for connections between devices, an integrated circuit can be made.

#### start: bare silicon wafer

oxidize

#### apply *photoresist* (pr)

expose mask 1







#### coat pr, align mask 3, expose mask 3



#### develop pr, etch oxide, strip pr



6



Dean P. Neikirk © 2001, last update January 29, 2001

Dept. of ECE, Univ. of Texas at Austin

## **MOSFET cross section**



 modern integrated circuits contain millions of individual MOSFETS

Dean P. Neikirk © 2001, last update January 29, 2001

Dept. of ECE, Univ. of Texas at Austin

# Silicon as a mechanical material for MEMS fabrication

- classic reference in the field:
  - K.E. Petersen "Silicon as a Mechanical Material", *Proceedings* of the IEEE, Vol. 70, No.5, May 1982.
    - http://robotics.eecs.berkeley.edu/~tahhan/MEMS/petersen/mems\_ petersen.htm
  - tenants:
    - silicon is abundant, inexpensive, and can be produced in extremely high purity and perfection;
    - silicon processing based on very thin deposited films which are highly amenable to miniaturization;
    - definition and reproduction of the devices, shapes, and patterns, are performed using photographic techniques that have already proved of being capable of high precision;
    - silicon microelectronic (and therefore also mems) devices are batch-fabricated.

#### Silicon crystal structure

- valence 4 structure
  - each atom bonds to four neighbors in a tetragonal configuration
- crystal lattice is face centered cubic (FCC), with two atom basis [at (0,0,0) and (1/4, 1/4, 1/4)]: Zincblende
  - two "interpenetrating" FCC lattices
  - lattice constant "a": cube side length
    - silicon (rm temp): 5.43 Å
    - nearest neighbor distance  $d_n = \frac{\sqrt{3}}{4}a$
  - atomic density:
    - 4 atoms inside cube
    - 6 atoms "half" inside at face centers
    - 8 atoms 1/8 inside at corners
    - total of 8 atoms per cube: atomic density 8 / a<sup>3</sup>



10

#### **Miller Indices in Crystals**

- For a plane with:
  - x-axis intercept x<sub>o</sub>
  - y-axis intercept y<sub>o</sub>
  - z-axis intercept z<sub>o</sub>
  - the Miller indices (hkl) for this plane are given by finding the inverses of  $x_0$ ,  $y_0$ , &  $z_0$  and reducing them to the smallest set of integers h: k: I having the same ratio  $(x_0)^{-1}$ :  $(y_0)^{-1}$ :  $(z_0)^{-1}$ .

#### • Conventions:

- (hkl): single plane or set of all parallel planes.
- ( $\overline{h}$  kl): for a plane that intercepts the x axis on the negative side of the origin.
- {hkl}: for all planes of equivalent symmetry, such as  $\{100\}$  for (100), (010), (001), (100), (010), and (001) in cubic symmetry.
- [hkl]: for the direction perpendicular to the (hkl) plane.
- <hkl>: for a full set of equivalent directions.

# Low Index Directions In Silicon (Cubic, Diamond Structure)



# (111) planes (111) planes etch the slowest, tend to be cleavage planes (111) atomic plane. <sup>,</sup> atomic *pl<sub>ane</sub>* 100) plane silicon: $\rho_{111}^{\text{surface}} = \frac{\left(3 \cdot \left[\frac{1}{2} \text{ atom}\right] + 3 \cdot \left[\frac{1}{6} \text{ atom}\right]\right)}{\sqrt{3}/2 \cdot a^2}$ 7.8 x 10<sup>14</sup> atoms / cm<sup>2</sup> surface atomic density somewhat higher than (100)

## (111) orientation in silicon

• [111] is the "natural" orientation for zincblende crystals



#### **Dopants and impurities in semiconductors**

WebElements: the periodic table on the world-wide web http://www.shef.ac.uk/chemistry/web-elements/



|            | lanthanum  | cerium      | praseodymiu | neodymium    | promethium | samarium  | europium  | gadolinium | n terbium  | dysprosium  | holmium     | erbium       | thulium     | ytterbium   |
|------------|------------|-------------|-------------|--------------|------------|-----------|-----------|------------|------------|-------------|-------------|--------------|-------------|-------------|
|            | 57         | 58          | 59          | 60           | 61         | 62        | 63        | 64         | 65         | 66          | 67          | 68           | 69          | 70          |
| *lanthanid | ⊧sLa       | Ce          | Pr          | Nd           | Pm         | Sm        | Eu        | Gd         | Tb         | Dy          | Но          | Er           | Tm          | Yb          |
|            | 138.9055(2 | ) 140.116(1 | 140.90765(  | 2) 144.24(3) | [144.9127] | 150.36(3) | 151.964(1 | 157.25(3)  | 158.92534( | ) 162.50(3) | 164.93032(  | 2) 167.26(3) | 168.93421(2 | ) 173.04(3) |
|            | actinium   | thorium     | protactini  | um uranium   | neptunium  | plutonium | americium | curium     | berkelium  | californit  | meinsteinit | m fermium    | mendelevium | nobelium    |
|            | 89         | 90          | 91          | 92           | 93         | 94        | 95        | 96         | 97         | 98          | 99          | 100          | 101         | 102         |
| **actinide | ₅ Ac       | Th          | Pa          | U            | Np         | Pu        | Am        | Cm         | Bk         | Cf          | Es          | Fm           | Md          | No          |
|            | [227.0277  | 232.0381(1  | )231.03588( | 2)238.0289(1 | [237.0482] | [244.0642 | [243.0614 | [247.0703  | [247.0703  | [251.0796   | [252.0830   | [257.0951    | [258.0984]  | [259.1011]  |

- For column IV elements (e.g., silicon)
  - valence III: one electron "short", acceptor
    - boron, aluminum, gallium
  - valence V: one "extra" electron, donor
    - nitrogen, phosphorus, arsenic, antimony

#### **Band diagrams for semiconductors**



- Fermi level indicates how states are actually occupied
  - a flat fermi level indicates that no external voltages are applied
  - most above the Fermi level are empty of electrons
  - most below are full of electrons
    - donor levels are empty when "active"
    - acceptor levels are occupied when "active"

#### Impurities in silicon

- impurity levels in meV from band edge
  - A: acceptor-like behavior
  - D: donor-like behavior



## **Impurities in Silicon**

- Oxygen: (column VI)
  - common unintentional impurity from silica crucibles
    - 10<sup>16</sup> 10<sup>18</sup> cm<sup>-3</sup>
    - usually clumps with silicon into large (~1μm) SiO<sub>2</sub> complexes; sensitive to processing history
- Carbon: (column IV)
  - high solid solubility (4x10<sup>18</sup>)
  - mainly substitutional, electrically inactive
- Gold:
  - deep donor or acceptor
  - rapid diffuser
  - minority carrier lifetime "killer"

## Solid solubility limits in Si

- solid solubility: maximum equilibrium concentration of impurity (solute) in host material (solvent)
  - temperature dependent
  - generally lower at lower temp

| – @ 1000°C | element<br>N <sub>solid sol</sub><br>(cm <sup>-3</sup> ) |    | B<br>1.5 x 10 <sup>20</sup> | С  | N                          |
|------------|----------------------------------------------------------|----|-----------------------------|----|----------------------------|
|            |                                                          |    | AI<br>2 x 10 <sup>19</sup>  | Si | P<br>10 <sup>21</sup>      |
|            | Cu                                                       | Zn | Ga<br>3 x 10 <sup>19</sup>  | Ge | As<br>2 x 10 <sup>21</sup> |
|            | Ag                                                       | Cd | In                          | Sn | Sb<br>4 x 10 <sup>19</sup> |
|            | Au<br>10 <sup>16</sup>                                   | Hg | TI                          | Pb | Bi                         |

## **Defects in crystals**

- point defects
  - "zero" dimensional
  - most common, lowest energy of formation
- dislocations or line defects
  - one dimensional
  - collection of continuous point defects
- area (planar) defects
  - two dimensional
  - gross change in crystal "orientation" across a surface

#### **Point Defects in Crystals**

vacancy, interstitial, substitutional



## **Edge Dislocations**



22



# Stacking arrangement and stacking faults layer ordering: Α A B C A B C planar (2-d) defect С – stacking fault: missing or extra (111) plane B • A - B - C - C - A - B - C • A - B - A - B - C Α

#### **Bulk crystal growth**

- melting points
  - silicon: 1420° C
  - quartz: 1732° C
- starting material: metallurgical-grade silicon
  - by mixing with carbon,  $SiO_2$  reduced in arc furnace
    - T > 1780°C:

 $SiC + SiO_2 \rightarrow Si + SiO + CO$ 

- common impurities
  - AI: 1600 ppm (1 ppm =  $5 \times 10^{16} \text{ cm}^{-3}$ )
  - B: 40 ppm
  - Fe: 2000 ppm
  - P: 30 ppm
- used mostly as an additive in steel

#### **Preparation of electronic-grade silicon**

- gas phase purification used to produce high purity silicon
  - − ~ 600°C
  - crud + Si + HCl  $\rightarrow$ 
    - SiCl<sub>4</sub> (silicon tetrachloride)
    - SiCl<sub>3</sub>H (trichlorosilane)
    - SiCl<sub>2</sub>H<sub>2</sub> (dichlorosilane)
    - chlorides of impurities
  - trichlorosilane (liquid at rm temp), further purification via fractional distillation
- now reverse reaction
  - $2SiHCl_3 + 2H_2$  (heat)  $\rightarrow 2Si + 6HCl$
  - after purification get
    - Al: below detection
    - B: < 1 ppb (1 ppb = 5 x 10<sup>13</sup> cm<sup>-3</sup>)
    - Fe: 4 ppm
    - P: < 2 ppb
    - Sb: 1 ppb
    - Au: 0.1 ppb

## **Czochralski crystal growth**

- silicon expands upon freezing (just like water)
  - if solidify in a container will induce large stress
- CZ growth is "container-less"



images from Mitsubishi Materials Silicon http://www.egg.or.jp/MSIL/english/ msilhist0-e.html



## **Diameter control during CZ growth**

- critical factor is heat flow from liquid to solid
  - interface between liquid and solid is an isotherm
    - temperature fluctuations cause problems!
  - already grown crystal is the heat sink
    - balance latent heat of fusion, solidification rate, pull rate, diameter, temperature gradient, heat flow
    - diameter inversely proportional to pull rate (typically ~ mm/min)



## Wafer preparation

- boule forming, orientation measurement
  - old standard: "flat"perpendicular to <110> direction;
  - on large diameter "notch" used instead



- wafer slicing
  - <100> typically within ± 0.5°
  - <111>, 2° 5° off axis

images from Mitsubishi Materials Silicon http://www.egg.or.jp/MSIL/english/msilhist0-e.html



# Wafer prep (cont.)

- lapping
  - grind both sides, flatness ~2-3  $\mu\text{m}$ 
    - ~20  $\mu$ m per side removed
- edge profiling
- etching
  - chemical etch to remove surface damaged layer
    - ~20  $\mu$ m per side removed
- polishing
  - chemi-mechanical polish, SiO<sub>2</sub> / NaOH slurry
    - ~25  $\mu\text{m}$  per polished side removed
  - gives wafers a "mirror" finish
- cleaning and inspection

#### Wafer specifications

| wafer<br>diam. | thickness             | thickness<br>variation | bow                  | warp                    |
|----------------|-----------------------|------------------------|----------------------|-------------------------|
| 150 mm         | <b>675</b> μ <b>m</b> |                        |                      |                         |
| ±              | ±                     | <b>50</b> μm           | <b>60</b> μ <b>m</b> |                         |
| 0.5mm          | <b>25</b> μ <b>m</b>  |                        |                      |                         |
| 200 mm         |                       |                        |                      |                         |
| ±              |                       |                        |                      |                         |
|                |                       |                        |                      |                         |
| 300 mm         | <b>775</b> μ <b>m</b> |                        |                      |                         |
| ±              | ±                     | <b>= 10</b> μm         |                      | <b>= 100</b> μ <b>m</b> |
| 0.2mm          | <b>25</b> μ <b>m</b>  |                        |                      |                         |

- warp: distance between highest and lowest points relative to reference plane
- bow: concave or convex deformation

## Thin film processes

- "grown" films
  - typically "converted" from original substrate material
    - example: SiO2 formed by oxidation of Si substrate
- "deposited" films
  - crystalline, poly crystalline, amorphous
  - electro-deposition
    - not standard IC process
  - liquid phase deposition
    - not standard IC process
  - vapor phase deposition
    - PVD: physical vapor deposition
    - CVD: chemical vapor deposition