Homework set 3 Spring 2001
EE 397K ADV STDS IN ELECTRICAL ENGR; Unique Number 15170
date: 3/19/01
due: 3/28/01

1. Consider the "electrostatic" actuator shown below, made of two fixed metal plates and one metal slab that is free to move in the y direction only:

Using the simplest approximations (no fringe fields) we have for the force in the y direction:
$\mathrm{F}_{\mathrm{y}}=\frac{\partial \mathrm{U}_{\text {cap }}}{\partial \mathrm{y}}=\frac{1}{2}\left[-\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l}{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}\right] \cdot \mathrm{V}^{2} \quad(\mathrm{y}>0)$
Assume the bias voltage V is constant, independent of time. Derive expressions for the velocity and position of the metallic slab as a function of time, assuming its initial position is such that $y(t=0)=$ w_{m}. Recall you'll just be applying Newton's Second Law F=m•a, for the case of constant force, starting at zero initial velocity. Here NSL looks like:
$\mathrm{F}=\rho \cdot l \cdot \mathrm{w}_{\mathrm{m}} \cdot \mathrm{h}_{\mathrm{m}} \cdot \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}$, where ρ is the density of the metal slab; hence you need to solve
$\frac{1}{2}\left[-\frac{\varepsilon_{\mathrm{r}} \cdot \varepsilon_{\mathrm{o}} \cdot l}{\mathrm{~h}-\mathrm{h}_{\mathrm{m}}}\right] \cdot \mathrm{V}^{2}=\rho \cdot l \cdot \mathrm{~W}_{\mathrm{m}} \cdot \mathrm{h}_{\mathrm{m}} \cdot \frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}$
The minus sign just means the direction of the force is in the $-\hat{y}$ direction.

Now that you know $y(t)$, you also know the capacitance as a function of time. Recall that the current flowing in the circuit is just $d Q / d t$, or $I(t)=\frac{\partial \mathrm{C}}{\partial \mathrm{t}} \cdot \mathrm{V}+\frac{\partial \mathrm{V}}{\partial \mathrm{t}} \cdot \mathrm{C}$. In this case V is constant, so find $\mathrm{I}(\mathrm{t})$. Let's actually do the numbers for two geometries:
a) Take $\mathrm{V}=10$ volts, and assume that $\mathrm{w}=l=1 \mathrm{~cm}, \mathrm{w}_{\mathrm{m}}=0.5 \mathrm{~cm}, \mathrm{~h}=0.1 \mathrm{~cm}, \mathrm{~h}_{\mathrm{m}}=0.09 \mathrm{~cm}$, and $\rho_{\mathrm{m}}=3 \mathrm{grams} / \mathrm{cm}^{3}$. How long does it take for the slider to completely enter the plates? Find the final velocity of the metal slider, and the current flowing in the circuit as a function of time.
b) Take $\mathrm{V}=10$ volts, and assume that $\mathrm{w}=l=100 \mu \mathrm{~m}, \mathrm{w}_{\mathrm{m}}=50 \mu \mathrm{~m}, \mathrm{~h}=10 \mu \mathrm{~m}, \mathrm{~h}_{\mathrm{m}}=9 \mu \mathrm{~m}$, and $\rho_{\mathrm{m}}=3 \mathrm{grams} / \mathrm{cm}^{3}$. How long does it take for the slider to completely enter the plates? Find the final velocity of the metal slider, and the current flowing in the circuit as a function of time.

