Homework set 3 Spring 2001 EE 397K ADV STDS IN ELECTRICAL ENGR; Unique Number 15170 date: 3/19/01 due: 3/28/01

1. Consider the "electrostatic" actuator shown below, made of two fixed metal plates and one metal slab that is free to move in the y direction only:

Using the simplest approximations (no fringe fields) we have for the force in the y direction:

F _y	$-\frac{\partial U_{cap}}{\partial U_{cap}}$	_1	$[\underline{\varepsilon}_{\rm r}\cdot \overline{\varepsilon}_{\rm o}\cdot l]$	$\cdot \mathbf{V}^2$	(v > 0)
	ду	$\frac{1}{2}$	$h - h_m$. v	(y > 0)

Assume the bias voltage V is constant, independent of time. Derive expressions for the velocity and position of the metallic slab as a function of time, assuming its initial position is such that y(t = 0) = w_m . Recall you'll just be applying Newton's Second Law $F=m \cdot a$, for the case of constant force, starting at zero initial velocity. Here NSL looks like:

$$F = \rho \cdot l \cdot w_{m} \cdot h_{m} \cdot \frac{d^{2}y}{dt^{2}}, \text{ where } \rho \text{ is the density of the metal slab; hence you need to solve}$$
$$\frac{1}{2} \left[-\frac{\varepsilon_{r} \cdot \varepsilon_{o} \cdot l}{h - h_{m}} \right] \cdot V^{2} = \rho \cdot l \cdot w_{m} \cdot h_{m} \cdot \frac{d^{2}y}{dt^{2}}.$$
The minus sign just means the direction of the force is in the $-\hat{y}$ direction.

The minus sign just means the direction of the force is in the -y direction.

Now that you know y(t), you also know the capacitance as a function of time. Recall that the current flowing in the circuit is just dQ/dt, or I(t) = $\frac{\partial C}{\partial t} \cdot V + \frac{\partial V}{\partial t} \cdot C$. In this case V is constant, so find I(t).

Let's actually do the numbers for two geometries:

- a) Take V = 10 volts, and assume that w = l = 1 cm, $w_m = 0.5$ cm, h = 0.1 cm, $h_m = 0.09$ cm, and $\rho_m = 3 \text{grams/cm}^3$. How long does it take for the slider to completely enter the plates? Find the final velocity of the metal slider, and the current flowing in the circuit as a function of time.
- b) Take V = 10 volts, and assume that $w = l = 100 \mu m$, $w_m = 50 \mu m$, $h = 10 \mu m$, $h_m = 9 \mu m$, and $\rho_m = 3 \text{grams/cm}^3$. How long does it take for the slider to completely enter the plates? Find the final velocity of the metal slider, and the current flowing in the circuit as a function of time.