Homework set 2 Spring 2001
EE 397K ADV STDS IN ELECTRICAL ENGR; Unique Number 15170
date: 2/21/01
due: 2/28/01

1. Consider a bar 10 microns long, 5 microns wide, and 1 micron thick, connected at one end to a heat sink. Assume the sides of the bar are thermally insulated (vacuum or air would do a pretty good job). Recall the thermal impedance for a rectangular bar is given by

$$
\mathrm{Z}_{\text {thermal }}=\frac{1}{\mathrm{t} \cdot \mathrm{w}} \cdot \sqrt{\frac{1}{\mathrm{j} \cdot \omega \cdot \kappa \cdot \rho \cdot \mathrm{C}}} \cdot \tanh \left(\sqrt{\frac{\mathrm{j} \cdot \omega \cdot \rho \cdot \mathrm{C}}{\kappa}} \cdot l\right)
$$

a) Plot the magnitude of $Z_{\text {thermal }}$ as a function of frequency from $\omega=10^{2} \mathrm{rad} / \mathrm{sec}$ to $10^{8} \mathrm{rad} / \mathrm{sec}$ (use a \log-log plot, please) for a bar made of SiO_{2} and for a bar made of Al .

A dc heat source is placed at the "input" end of the bar, producing a total input power of $1 \mu \mathrm{~W}$.
b) Assuming the bar is made of SiO_{2}, what is the temperature rise at the "input" end of the bar?
c) Assuming the bar is made of Al , what is the temperature rise at the "input" end of the bar?
2. Consider a heated hemispherical surface or radius $r_{o}=2 \mu \mathrm{~m}$. Recall in such a case the dc temperature rise for input power P is given by:

$$
\Delta \mathrm{T}=\frac{1}{\underbrace{2 \pi \cdot \kappa \cdot \mathrm{r}_{\mathrm{o}}}_{\begin{array}{c}
\text { thermal spreading } \\
\text { resis sance }
\end{array}} \mathrm{P}}
$$

b) Assuming the material is SiO_{2}, what is the thermal resistance at the surface of the hemisphere?
c) Assuming the material is Al , what is the thermal resistance at the surface of the hemisphere?
3. Consider a beam 10 microns long, 5 microns wide, and 1 micron thick, clamped at one end (in other words, it looks like a diving board). Assume the only force acting on the beam is gravity (1 g), and that the beam is horizontal. Recall the deflection for uniformly distributed force is

$$
y(x)=\frac{W}{24 \cdot E \cdot I} \cdot \begin{cases}x^{2} \cdot\left(6 \cdot a^{2}-4 \cdot a \cdot x+x^{2}\right) & x<a \\ a^{3} \cdot(4 \cdot x-a) & x>a\end{cases}
$$

a) Assuming the beam is made of SiO_{2}, find the shape under gravitational loading; what is the maximum tip deflection? Repeat, but assume the length is 100 microns.
b) Assuming the beam is made of Al , find the shape under gravitational loading; what is the maximum tip deflection? Repeat assuming the length is 100 microns.

